
31 TE modes in dielectric slab waveguides
• As frequency f increases well beyond the microwave range, the cutoff

wavelength λc = 2a
1 = c

f of the TE10 of mode will dip towards µm scales.
Guiding structures with µm scales can be more naturally implemented
as dielectric slabs as opposed to hollow waveguides. Optical integrated
circuits contain many such channels of dielectric slab waveguides.

– In this lecture we will examine briefly the guidance conditions
and dispersion characteristics encountered in dielectric slab waveg-
uides.

• Consider a slab of dielectric material of refractive index n1 =
√

ε1r

of a width d embedded in a dielectric with a smaller refractive index
n2 =

√
ε2r. Propagating modes of frequency f can be trapped and

guided in the slab with the refractive index n1 > n2,

z

x

d

n2

n2

n1 > n2 θi

Guidance requires θi > θc = sin−1 n2

n1

– so long as the mode can be represented as a superposition of un-
guided TEM waves reflected from plane boundaries of regions with
index n1 and n2 with an incidence angle θi larger that θc, where

θc = sin−1 n2

n1

is the critical angle for total internal reflection (TIR).
– Recall that when TIR occurs, the reflected wave has the same

amplitude as the incident wave, while an evanescent transmitted

1



wave is found in the second region. If θi < θc no guidance can occur
since the transmitted fields in that case would be propagating
rather than evanescent.

• Guided modes not only require
φb = φr − k1xd,

φg = φb + ∠Γ,

φm = φg − k1xd,

φr = φm + ∠Γ

where

k1x = k1 cos θi.

z

x

d

n2

n2

n1 > n2 θi

Guidance requires θi > θc = sin−1 n2

n1

k1d cos θi = ∠Γ+mπ, m = 0, 1, 2, · · ·

θi > sin−1 n2

n1
,

but also
k1d cos θi = ∠Γ + mπ, m = 0, 1, 2, · · ·

where Γ denotes the reflection coefficient at the interfaces between
the regions of n1 and n2. This guidance condition ensures the self-
consistency of free TEM components of the guided modes reflected
from the planar interfaces separated by distance d.

• For the TE mode case where the incident and reflected fields taken as

Ẽi = ŷEoe
−jk1(− cos θix+sin θiz) and Ẽr = ŷEoΓTEe−jk1(cos θix+sin θiz)

the reflection coefficient is given as

ΓTE =
η2 cos θi − η1 cos θ2

η2 cos θi + η1 cos θ2
=

n1 cos θi − n2 cos θ2

n1 cos θi + n2 cos θ2

since
η =

√
µo

εrεo
=

ηo√
εr

=
ηo

n
.
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• Above, Guidance conditions:

θi > sin−1 n2

n1

and

k1d cos θi = ∠Γ+mπ, m = 0, 1, 2, · · ·

Another way to obtain the
guidance conditions:

Since

Ẽi = ŷEoe
−jk1(− cos θix+sin θiz)

and

Ẽr = ŷEoΓTEe−jk1(cos θix+sin θiz),

and Ẽr gets reflected at x = d
(once again) to become Ẽi, it is
then necessary that

(ΓTEe−jk1 cos θid)ΓTE = ejk1 cos θide−j2πm

for integers m. This is possible iff
|ΓTE| = 1, i.e.,

θi > sin−1 n2

n1
,

and

k1d cos θi = ∠ΓTE+mπ, m = 0, 1, 2, · · ·

cos θ2 =
√

1 − sin2 θ2 =

√

1 − n2
1

n2
2

sin2 θi

since according to Snell’s law

k1 sin θi = k2 sin θ2 and sin θ2 =
k1

k2
sin θ1 =

ω
√

µoε1

ω
√

µoε2
sin θ1 =

n1

n2
sin θ1.

Clearly, for

1 <
n2

1

n2
2

sin2 θi ⇔ θi > θc = sin−1 n2

n1

we have

cos θ2 = ±j

√
n2

1

n2
2

sin2 θi − 1

and (using the root that causes the decay of the fields ∝ e∓jk2 cos θ2x

above and below the slab)

ΓTE =
n1 cos θi + j

√
n2

1 sin2 θi − n2
2

n1 cos θi − j
√

n2
1 sin2 θi − n2

2

with

∠ΓTE = 2 tan−1

√
sin2 θi − n2

2/n
2
1

cos θi
.

Now, substituting ∠ΓTE in the guidance condition shown in the margin,
we obtain

k1d

2
cos θi − m

π

2
= tan−1

√
sin2 θi − n2

2/n
2
1

cos θi
, m = 0, 1, 2, 3, · · ·
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which is only valid for θi satisfying

θi ≥ sin−1 n2

n1
≡ θc.

Since
k1 =

ω

v1
, where v1 =

1
√

µoε1
=

c

n1
,

the guidance condition can also be cast as

d

v1/f
cos θi −

m

2
=

1

π
tan−1

√
sin2 θi − n2

2/n
2
1

cos θi
, m = 0, 1, 2, 3, · · ·

which is known as the characteristic equation for TE modes. 0.0 0.2 0.4 0.6 0.8 1.0
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Graphical solution of the char-
acteristic equation for TE modes
m = 0, 1, 2, 3 in propagation and
mode m = 4 in evanescence. The
blue curve depicts

1

π
tan−1

√
sin2 θi − n2

2/n
2
1

cos θi

as a function of cos θi for n2 = 1
and n1 = 1.5 while the straight
lines depict

d

v1/f
cos θi −

m

2

with d
v1/f = 2.5 and m increasing

from left to right in steps of one.

• The above equations constrain the number of propagating modes at a
given frequency f and the associated angle θi for each TE mode m.

– Each propagating mode for a given d is associated with a cutoff
frequency fc, and propagation is possible only if f > fc for the
given mode.

– At f = fc we have θi = θc for the given mode, in which case

d

v1/fc
cos θc −

m

2
=

1

π
tan−1

√
sin2 θc − n2

2/n
2
1

cos θc
= 0,

from which we obtain the cutoff frequencies

fc =
mv1

2d cos θc
, m = 0, 1, 2, 3 · · ·
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Since

v1 =
c

n1
and cos θc =

√
1 − sin2 θc =

√

1 − n2
2

n2
1

it follows that

fc =
mc

2d
√

n2
1 − n2

2

, m = 0, 1, 2, 3 · · ·

for TE modes.

Example 1: Consider a dielectric slab waveguide with d = 3 mm, n1 = 1.5, and
n2 = 1. (a) Determine the cutoff frequency for the TE1 mode in the guide. (b)
Determine the frequency f of a TE0 mode signal in the waveguide if θi = 60◦.
(c) Determine the phase velocity of the mode described in part (b).

Solution: (a) The cutoff frequency for TE1 mode is

fc =
mc

2d
√

n2
1 − n2

2
=

3 × 1010 cm/s
2 × 0.3 cm

√
1.52 − 1

=
5 × 1010
√

1.25
Hz ≈ 44.72 GHz.

(b) Evaluating the characteristic equation

d

v1/f
cos θi −

m

2
=

1

π
tan−1

√
sin2 θi − n2

2/n
2
1

cos θi
, m = 0, 1, 2, 3, · · ·

with m = 0, n2/n1 = 2/3, sin θi =
√

3/2, and cos θi = 1/2, we find

fd

v12
=

1

π
tan−1

√
3/4 − (2/3)2

1/2
= 0.266 ⇒ f = 0.266× 2 × v1

d
.
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Since
v1 =

c

n1
=

3 × 1010 cm/s
3/2

= 2 × 1010 cm/s,

we find

f = 0.266× 2 × v1

d
= 0.266× 2 × 2 × 1010 cm/s

0.3 cm
= 3.54× 1010 Hz = 35.4 GHz.

(c) The phase velocity of the mode is given by

vpz =
ω

kz
=

ω

k1 sin θi
=

v1

sin θi
=

2 × 1010 cm/s√
3/2

= 2.31 × 1010 cm/s.
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