31 TE modes in dielectric slab waveguides

- As frequency f increases well beyond the microwave range, the cutoff wavelength $\lambda_c = \frac{2a}{1} = \frac{c}{f}$ of the TE₁₀ of mode will dip towards μ m scales. Guiding structures with μ m scales can be more naturally implemented as dielectric slabs as opposed to hollow waveguides. Optical integrated circuits contain many such channels of **dielectric slab waveguides**.
 - In this lecture we will examine briefly the guidance conditions and dispersion characteristics encountered in dielectric slab waveguides.
- Consider a slab of dielectric material of refractive index $n_1 = \sqrt{\epsilon_{1r}}$ of a width d embedded in a dielectric with a smaller refractive index $n_2 = \sqrt{\epsilon_{2r}}$. Propagating modes of frequency f can be trapped and guided in the slab with the refractive index $n_1 > n_2$,
 - so long as the mode can be represented as a superposition of unguided TEM waves reflected from plane boundaries of regions with index n_1 and n_2 with an incidence angle θ_i larger that θ_c , where

$$\theta_c = \sin^{-1} \frac{n_2}{n_1}$$

is the critical angle for total internal reflection (TIR).

- Recall that when TIR occurs, the reflected wave has the same amplitude as the incident wave, while an evanescent transmitted

wave is found in the second region. If $\theta_i < \theta_c$ no guidance can occur since the transmitted fields in that case would be propagating rather than evanescent.

• Guided modes not only require

$$\theta_i > \sin^{-1}\frac{n_2}{n_1},$$

but also

$$k_1 d \cos \theta_i = \angle \Gamma + m\pi, \ m = 0, 1, 2, \cdots$$

where Γ denotes the reflection coefficient at the interfaces between the regions of n_1 and n_2 . This guidance condition ensures the selfconsistency of free TEM components of the guided modes reflected from the planar interfaces separated by distance d.

• For the TE mode case where the incident and reflected fields taken as

$$\tilde{\mathbf{E}}_i = \hat{y} E_o e^{-jk_1(-\cos\theta_i x + \sin\theta_i z)}$$
 and $\tilde{\mathbf{E}}_r = \hat{y} E_o \Gamma_{TE} e^{-jk_1(\cos\theta_i x + \sin\theta_i z)}$

the reflection coefficient is given as

$$\Gamma_{TE} = \frac{\eta_2 \cos \theta_i - \eta_1 \cos \theta_2}{\eta_2 \cos \theta_i + \eta_1 \cos \theta_2} = \frac{n_1 \cos \theta_i - n_2 \cos \theta_2}{n_1 \cos \theta_i + n_2 \cos \theta_2}$$

since

$$\eta = \sqrt{\frac{\mu_o}{\epsilon_r \epsilon_o}} = \frac{\eta_o}{\sqrt{\epsilon_r}} = \frac{\eta_o}{n}.$$

$$\begin{split} \phi_b &= \phi_r - k_{1x} d, \\ \phi_g &= \phi_b + \angle \Gamma, \\ \phi_m &= \phi_g - k_{1x} d, \\ \phi_r &= \phi_m + \angle \Gamma \end{split}$$

where

$$k_1 d \cos \theta_i = \angle \Gamma + m\pi, \ m = 0, 1, 2, \cdots$$

• Above,

$$\cos\theta_2 = \sqrt{1 - \sin^2\theta_2} = \sqrt{1 - \frac{n_1^2}{n_2^2}\sin^2\theta_i}$$

since according to Snell's law

$$k_1 \sin \theta_i = k_2 \sin \theta_2$$
 and $\sin \theta_2 = \frac{k_1}{k_2} \sin \theta_1 = \frac{\omega \sqrt{\mu_o \epsilon_1}}{\omega \sqrt{\mu_o \epsilon_2}} \sin \theta_1 = \frac{n_1}{n_2} \sin \theta_1$.

Clearly, for

$$1 < \frac{n_1^2}{n_2^2} \sin^2 \theta_i \quad \Leftrightarrow \quad \theta_i > \theta_c = \sin^{-1} \frac{n_2}{n_1}$$

we have

$$\cos\theta_2 = \pm j \sqrt{\frac{n_1^2}{n_2^2}} \sin^2\theta_i - 1$$

and (using the root that causes the decay of the fields $\propto e^{\pm jk_2\cos\theta_2 x}$ above and below the slab)

$$\Gamma_{TE} = \frac{n_1 \cos \theta_i + j\sqrt{n_1^2 \sin^2 \theta_i - n_2^2}}{n_1 \cos \theta_i - j\sqrt{n_1^2 \sin^2 \theta_i - n_2^2}}$$

with

$$\angle \Gamma_{TE} = 2 \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2/n_1^2}}{\cos \theta_i}.$$

Guidance conditions:

$$\theta_i > \sin^{-1} \frac{n_2}{n_1}$$

and

$$k_1 d \cos \theta_i = \angle \Gamma + m\pi, \ m = 0, 1, 2, \cdots$$

Another way to obtain the guidance conditions:

Since

$$\tilde{\mathbf{E}}_i = \hat{y} E_o e^{-jk_1(-\cos\theta_i x + \sin\theta_i z)}$$

and

$$\tilde{\mathbf{E}}_r = \hat{y} E_o \Gamma_{TE} e^{-jk_1(\cos\theta_i x + \sin\theta_i z)},$$

and $\tilde{\mathbf{E}}_r$ gets reflected at x = d(once again) to become $\tilde{\mathbf{E}}_i$, it is then necessary that

$$(\Gamma_{TE}e^{-jk_1\cos\theta_i d})\Gamma_{TE} = e^{jk_1\cos\theta_i d}e^{-j2\pi m}$$

for integers m. This is possible iff $|\Gamma_{TE}| = 1$, i.e.,

$$\theta_i > \sin^{-1} \frac{n_2}{n_1},$$

and

Now, substituting $\angle \Gamma_{TE}$ in the guidance condition shown in the margin, $k_1 d \cos \theta_i = \angle \Gamma_{TE} + m\pi$, $m = 0, 1, 2, \cdots$ we obtain

$$\frac{k_1 d}{2} \cos \theta_i - m \frac{\pi}{2} = \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2 / n_1^2}}{\cos \theta_i}, \quad m = 0, 1, 2, 3, \cdots$$

which is only valid for θ_i satisfying

$$\theta_i \ge \sin^{-1} \frac{n_2}{n_1} \equiv \theta_c.$$

Since

$$k_1 = \frac{\omega}{v_1}$$
, where $v_1 = \frac{1}{\sqrt{\mu_o \epsilon_1}} = \frac{c}{n_1}$,

the guidance condition can also be cast as

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2} = \frac{1}{\pi}\tan^{-1}\frac{\sqrt{\sin^2\theta_i - n_2^2/n_1^2}}{\cos\theta_i}, \quad m = 0, 1, 2, 3, \cdots$$

which is known as the **characteristic equation** for TE modes.

- The above equations constrain the number of propagating modes at a given frequency f and the associated angle θ_i for each TE mode m.
 - Each propagating mode for a given d is associated with a cutoff frequency f_c , and propagation is possible only if $f > f_c$ for the given mode.
 - At $f = f_c$ we have $\theta_i = \theta_c$ for the given mode, in which case

$$\frac{d}{v_1/f_c}\cos\theta_c - \frac{m}{2} = \frac{1}{\pi}\tan^{-1}\frac{\sqrt{\sin^2\theta_c - n_2^2/n_1^2}}{\cos\theta_c} = 0,$$

from which we obtain the cutoff frequencies

$$f_c = \frac{mv_1}{2d\cos\theta_c}, \quad m = 0, 1, 2, 3\cdots$$

0.5

Graphical solution of the characteristic equation for TE modes m = 0, 1, 2, 3 in propagation and mode m = 4 in evanescence. The blue curve depicts

$$\frac{1}{\pi} \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2/n_1^2}}{\cos \theta_i}$$

as a function of $\cos \theta_i$ for $n_2 = 1$ and $n_1 = 1.5$ while the straight lines depict

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2}$$

with $\frac{d}{v_1/f} = 2.5$ and *m* increasing from left to right in steps of one. Since

$$v_1 = \frac{c}{n_1}$$
 and $\cos \theta_c = \sqrt{1 - \sin^2 \theta_c} = \sqrt{1 - \frac{n_2^2}{n_1^2}}$

it follows that

$$f_c = \frac{mc}{2d\sqrt{n_1^2 - n_2^2}}, \ m = 0, 1, 2, 3 \cdots$$

for TE modes.

Example 1: Consider a dielectric slab waveguide with d = 3 mm, $n_1 = 1.5$, and $n_2 = 1$. (a) Determine the cutoff frequency for the TE₁ mode in the guide. (b) Determine the frequency f of a TE₀ mode signal in the waveguide if $\theta_i = 60^{\circ}$. (c) Determine the phase velocity of the mode described in part (b).

Solution: (a) The cutoff frequency for TE_1 mode is

$$f_c = \frac{mc}{2d\sqrt{n_1^2 - n_2^2}} = \frac{3 \times 10^{10} \,\mathrm{cm/s}}{2 \times 0.3 \,\mathrm{cm}\sqrt{1.5^2 - 1}} = \frac{5 \times 10^{10}}{\sqrt{1.25}} \,\mathrm{Hz} \approx 44.72 \,\mathrm{GHz}.$$

(b) Evaluating the characteristic equation

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2} = \frac{1}{\pi}\tan^{-1}\frac{\sqrt{\sin^2\theta_i - n_2^2/n_1^2}}{\cos\theta_i}, \ m = 0, 1, 2, 3, \cdots$$

with $m = 0, n_2/n_1 = 2/3, \sin \theta_i = \sqrt{3}/2$, and $\cos \theta_i = 1/2$, we find

$$\frac{fd}{v_1 2} = \frac{1}{\pi} \tan^{-1} \frac{\sqrt{3/4 - (2/3)^2}}{1/2} = 0.266 \quad \Rightarrow \quad f = 0.266 \times 2 \times \frac{v_1}{d}.$$

Since

$$v_1 = \frac{c}{n_1} = \frac{3 \times 10^{10} \,\mathrm{cm/s}}{3/2} = 2 \times 10^{10} \,\mathrm{cm/s},$$

we find

$$f = 0.266 \times 2 \times \frac{v_1}{d} = 0.266 \times 2 \times \frac{2 \times 10^{10} \,\mathrm{cm/s}}{0.3 \,\mathrm{cm}} = 3.54 \times 10^{10} \,\mathrm{Hz} = 35.4 \,\mathrm{GHz}$$

(c) The phase velocity of the mode is given by

$$v_{pz} = \frac{\omega}{k_z} = \frac{\omega}{k_1 \sin \theta_i} = \frac{v_1}{\sin \theta_i} = \frac{2 \times 10^{10} \,\mathrm{cm/s}}{\sqrt{3}/2} = 2.31 \times 10^{10} \,\mathrm{cm/s}.$$