31 TE modes in dielectric slab waveguides

- As frequency f increases well beyond the microwave range, the cutoff wavelength $\lambda_{c}=\frac{2 a}{1}=\frac{c}{f}$ of the TE_{10} of mode will dip towards $\mu \mathrm{m}$ scales. Guiding structures with $\mu \mathrm{m}$ scales can be more naturally implemented as dielectric slabs as opposed to hollow waveguides. Optical integrated circuits contain many such channels of dielectric slab waveguides.
- In this lecture we will examine briefly the guidance conditions and dispersion characteristics encountered in dielectric slab waveguides.
- Consider a slab of dielectric material of refractive index $n_{1}=\sqrt{\epsilon_{1 r}}$ of a width d embedded in a dielectric with a smaller refractive index $n_{2}=\sqrt{\epsilon_{2 r}}$. Propagating modes of frequency f can be trapped and guided in the slab with the refractive index $n_{1}>n_{2}$,

- so long as the mode can be represented as a superposition of unguided TEM waves reflected from plane boundaries of regions with index n_{1} and n_{2} with an incidence angle θ_{i} larger that θ_{c}, where

$$
\theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

is the critical angle for total internal reflection (TIR).

- Recall that when TIR occurs, the reflected wave has the same amplitude as the incident wave, while an evanescent transmitted
wave is found in the second region. If $\theta_{i}<\theta_{c}$ no guidance can occur since the transmitted fields in that case would be propagating rather than evanescent.
- Guided modes not only require

$$
\theta_{i}>\sin ^{-1} \frac{n_{2}}{n_{1}},
$$

but also

$$
k_{1} d \cos \theta_{i}=\angle \Gamma+m \pi, \quad m=0,1,2, \cdots
$$

where Γ denotes the reflection coefficient at the interfaces between the regions of n_{1} and n_{2}. This guidance condition ensures the selfconsistency of free TEM components of the guided modes reflected from the planar interfaces separated by distance d.

- For the TE mode case where the incident and reflected fields taken as

$$
\tilde{\mathbf{E}}_{i}=\hat{y} E_{o} e^{-j k_{1}\left(-\cos \theta_{i} x+\sin \theta_{i} z\right)} \text { and } \tilde{\mathbf{E}}_{r}=\hat{y} E_{o} \Gamma_{T E} e^{-j k_{1}\left(\cos \theta_{i} x+\sin \theta_{i} z\right)}
$$

the reflection coefficient is given as

$$
\Gamma_{T E}=\frac{\eta_{2} \cos \theta_{i}-\eta_{1} \cos \theta_{2}}{\eta_{2} \cos \theta_{i}+\eta_{1} \cos \theta_{2}}=\frac{n_{1} \cos \theta_{i}-n_{2} \cos \theta_{2}}{n_{1} \cos \theta_{i}+n_{2} \cos \theta_{2}}
$$

since

$$
\eta=\sqrt{\frac{\mu_{o}}{\epsilon_{r} \epsilon_{o}}}=\frac{\eta_{o}}{\sqrt{\epsilon_{r}}}=\frac{\eta_{o}}{n} .
$$

- Above,

$$
\cos \theta_{2}=\sqrt{1-\sin ^{2} \theta_{2}}=\sqrt{1-\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{i}}
$$

since according to Snell's law
$k_{1} \sin \theta_{i}=k_{2} \sin \theta_{2}$ and $\sin \theta_{2}=\frac{k_{1}}{k_{2}} \sin \theta_{1}=\frac{\omega \sqrt{\mu_{o} \epsilon_{1}}}{\omega \sqrt{\mu_{o} \epsilon_{2}}} \sin \theta_{1}=\frac{n_{1}}{n_{2}} \sin \theta_{1}$.
Clearly, for

$$
1<\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{i} \quad \Leftrightarrow \quad \theta_{i}>\theta_{c}=\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

we have

$$
\cos \theta_{2}= \pm j \sqrt{\frac{n_{1}^{2}}{n_{2}^{2}} \sin ^{2} \theta_{i}-1}
$$

and (using the root that causes the decay of the fields $\propto e^{\mp j k_{2} \cos \theta_{2} x}$ above and below the slab)

$$
\Gamma_{T E}=\frac{n_{1} \cos \theta_{i}+j \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}{n_{1} \cos \theta_{i}-j \sqrt{n_{1}^{2} \sin ^{2} \theta_{i}-n_{2}^{2}}}
$$

with

$$
\angle \Gamma_{T E}=2 \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{i}}
$$

Now, substituting $\angle \Gamma_{T E}$ in the guidance condition shown in the margin, we obtain

$$
\frac{k_{1} d}{2} \cos \theta_{i}-m \frac{\pi}{2}=\tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{i}}, \quad m=0,1,2,3, \cdots
$$

Guidance conditions:

$$
\theta_{i}>\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

and
$k_{1} d \cos \theta_{i}=\angle \Gamma+m \pi, \quad m=0,1,2, \cdots$

Another way to obtain the

 guidance conditions:Since

$$
\tilde{\mathbf{E}}_{i}=\hat{y} E_{o} e^{-j k_{1}\left(-\cos \theta_{i} x+\sin \theta_{i} z\right)}
$$

and

$$
\tilde{\mathbf{E}}_{r}=\hat{y} E_{o} \Gamma_{T E} e^{-j k_{1}\left(\cos \theta_{i} x+\sin \theta_{i} z\right)}
$$

and $\tilde{\mathbf{E}}_{r}$ gets reflected at $x=d$ (once again) to become $\tilde{\mathbf{E}}_{i}$, it is then necessary that
$\left(\Gamma_{T E} e^{-j k_{1} \cos \theta_{i} d}\right) \Gamma_{T E}=e^{j k_{1} \cos \theta_{i} d} e^{-j 2 \pi m}$
for integers m. This is possible iff $\left|\Gamma_{T E}\right|=1$, i.e.,

$$
\theta_{i}>\sin ^{-1} \frac{n_{2}}{n_{1}}
$$

and
$k_{1} d \cos \theta_{i}=\angle \Gamma_{T E}+m \pi, \quad m=0,1,2, \cdots$
which is only valid for θ_{i} satisfying

$$
\theta_{i} \geq \sin ^{-1} \frac{n_{2}}{n_{1}} \equiv \theta_{c}
$$

Since

$$
k_{1}=\frac{\omega}{v_{1}}, \text { where } v_{1}=\frac{1}{\sqrt{\mu_{o} \epsilon_{1}}}=\frac{c}{n_{1}}
$$

the guidance condition can also be cast as

$$
\frac{d}{v_{1} / f} \cos \theta_{i}-\frac{m}{2}=\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{i}}, m=0,1,2,3, \cdots
$$

which is known as the characteristic equation for TE modes.

- The above equations constrain the number of propagating modes at a given frequency f and the associated angle θ_{i} for each TE mode m.
- Each propagating mode for a given d is associated with a cutoff frequency f_{c}, and propagation is possible only if $f>f_{c}$ for the given mode.
- At $f=f_{c}$ we have $\theta_{i}=\theta_{c}$ for the given mode, in which case

$$
\frac{d}{v_{1} / f_{c}} \cos \theta_{c}-\frac{m}{2}=\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{c}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{c}}=0
$$

from which we obtain the cutoff frequencies

$$
f_{c}=\frac{m v_{1}}{2 d \cos \theta_{c}}, \quad m=0,1,2,3 \cdots
$$

Graphical solution of the characteristic equation for TE modes $m=0,1,2,3$ in propagation and mode $m=4$ in evanescence. The blue curve depicts

$$
\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{i}}
$$

as a function of $\cos \theta_{i}$ for $n_{2}=1$ and $n_{1}=1.5$ while the straight lines depict

$$
\frac{d}{v_{1} / f} \cos \theta_{i}-\frac{m}{2}
$$

with $\frac{d}{v_{1} / f}=2.5$ and m increasing from left to right in steps of one.

Since

$$
v_{1}=\frac{c}{n_{1}} \text { and } \cos \theta_{c}=\sqrt{1-\sin ^{2} \theta_{c}}=\sqrt{1-\frac{n_{2}^{2}}{n_{1}^{2}}}
$$

it follows that

$$
f_{c}=\frac{m c}{2 d \sqrt{n_{1}^{2}-n_{2}^{2}}}, \quad m=0,1,2,3 \cdots
$$

for TE modes.

Example 1: Consider a dielectric slab waveguide with $d=3 \mathrm{~mm}, n_{1}=1.5$, and $n_{2}=1$. (a) Determine the cutoff frequency for the TE_{1} mode in the guide. (b) Determine the frequency f of a TE_{0} mode signal in the waveguide if $\theta_{i}=60^{\circ}$.
(c) Determine the phase velocity of the mode described in part (b).

Solution: (a) The cutoff frequency for TE_{1} mode is

$$
f_{c}=\frac{m c}{2 d \sqrt{n_{1}^{2}-n_{2}^{2}}}=\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{2 \times 0.3 \mathrm{~cm} \sqrt{1.5^{2}-1}}=\frac{5 \times 10^{10}}{\sqrt{1.25}} \mathrm{~Hz} \approx 44.72 \mathrm{GHz}
$$

(b) Evaluating the characteristic equation

$$
\frac{d}{v_{1} / f} \cos \theta_{i}-\frac{m}{2}=\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{\sin ^{2} \theta_{i}-n_{2}^{2} / n_{1}^{2}}}{\cos \theta_{i}}, m=0,1,2,3, \cdots
$$

with $m=0, n_{2} / n_{1}=2 / 3, \sin \theta_{i}=\sqrt{3} / 2$, and $\cos \theta_{i}=1 / 2$, we find

$$
\frac{f d}{v_{1} 2}=\frac{1}{\pi} \tan ^{-1} \frac{\sqrt{3 / 4-(2 / 3)^{2}}}{1 / 2}=0.266 \Rightarrow f=0.266 \times 2 \times \frac{v_{1}}{d}
$$

Since

$$
v_{1}=\frac{c}{n_{1}}=\frac{3 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{3 / 2}=2 \times 10^{10} \mathrm{~cm} / \mathrm{s},
$$

we find
$f=0.266 \times 2 \times \frac{v_{1}}{d}=0.266 \times 2 \times \frac{2 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{0.3 \mathrm{~cm}}=3.54 \times 10^{10} \mathrm{~Hz}=35.4 \mathrm{GHz}$.
(c) The phase velocity of the mode is given by

$$
v_{p z}=\frac{\omega}{k_{z}}=\frac{\omega}{k_{1} \sin \theta_{i}}=\frac{v_{1}}{\sin \theta_{i}}=\frac{2 \times 10^{10} \mathrm{~cm} / \mathrm{s}}{\sqrt{3} / 2}=2.31 \times 10^{10} \mathrm{~cm} / \mathrm{s} .
$$

