32 TM modes in dielectric waveguides

• Last lecture we examined the **characteristic equation** and the **cutoff frequencies** of TE mode of propagation in dielectric slab waveguides.

Guided TE_m mode fields consisting of the superposition of transverse polarized electric fields

$$\tilde{\mathbf{E}}_i = \hat{y} E_o e^{-jk_1(-\cos\theta_i x + \sin\theta_i z)}$$
 and $\tilde{\mathbf{E}}_r = \hat{y} E_o \Gamma_{TE} e^{-jk_1(\cos\theta_i x + \sin\theta_i z)}$,

where

$$\Gamma_{TE} = \frac{n_1 \cos \theta_i + j \sqrt{n_1^2 \sin^2 \theta_i - n_2^2}}{n_1 \cos \theta_i - j \sqrt{n_1^2 \sin^2 \theta_i - n_2^2}},$$

have

1. propagation angles

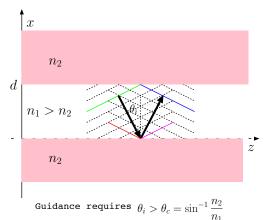
$$\theta_i > \theta_c = \sin^{-1} \frac{n_2}{n_1}$$
, (critical angle)

2. satisfying a characteristic equation

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2} = \frac{1}{\pi}\tan^{-1}\frac{\sqrt{\sin^2\theta_i - n_2^2/n_1^2}}{\cos\theta_i}, \quad m = 0, 1, 2, 3, \dots$$

3. for frequencies f exceeding the cutoff frequency

$$f_c = \frac{mc}{2d\sqrt{n_1^2 - n_2^2}}, \quad m = 0, 1, 2, 3 \cdots$$



• For a given $f = \frac{2\pi}{\omega}$, the charcteristic equation can be solved (typically by using graphical techniques) for θ_i , from which we can calculate the propagation constant

$$k_z = k_1 \sin \theta_i$$

where

$$k_1 = \frac{\omega}{v_1} = \frac{\omega}{c} n_1$$

is the wavenumber in the core region of the guide at the operation frequency $\omega = 2\pi f$. It follows that the

guide wavelength
$$\lambda_g = \frac{2\pi}{k_z}$$

and 1

phase velocity
$$v_{pz} = \frac{\omega}{k_z} = \frac{\omega}{k_1 \sin \theta_i} = \frac{v_1}{\sin \theta_i}$$

can be obtained once θ_i is calculated from the characteristic equation.

- Given the k_z in the core region, k_x and k_z outside the core region (with index n_2) can be obtained by using the fact that k_z is identical in both regions (why?).
- In this lecture we will continue our study of dielectric slab waveguides by examining the TM modes.

¹Note that group velocity $v_g = v_1 \sin \theta_i$ (in analogy with parallel plate wavegiudes) if and only if $\omega \gg \omega_c = 2\pi f_c$ because of the effect of the cladding region that contains a substatial fraction on the wave energy unless $\omega \gg \omega_c$ — in fact for TE₀ mode $v_g \approx v_2$ at frequencies much less than the cutoff frequency of TE₁ mode.

TM modes

• For the TM mode where the incident and reflected fields are taken as

$$\tilde{\mathbf{H}}_i = \hat{y} H_o e^{-jk_1(-\cos\theta_i x + \sin\theta_i z)}$$
 and $\tilde{\mathbf{H}}_r = \hat{y} H_o R e^{-jk_1(\cos\theta_i x + \sin\theta_i z)}$

the reflection coefficient is given as

$$R = \frac{\eta_1 \cos \theta_i - \eta_2 \cos \theta_2}{\eta_1 \cos \theta_i + \eta_2 \cos \theta_2} = \frac{n_2 \cos \theta_i - n_1 \cos \theta_2}{n_2 \cos \theta_i + n_1 \cos \theta_2}.$$

This leads to

$$R = \frac{n_2 \cos \theta_i + j n_1 \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_i - 1}}{n_2 \cos \theta_i - j n_1 \sqrt{\frac{n_1^2}{n_2^2} \sin^2 \theta_i - 1}}$$

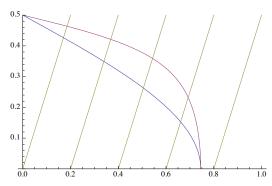
with

$$\angle R = 2 \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2 / n_1^2}}{\frac{n_2^2}{n_1^2} \cos \theta_i}.$$

Hence, in this case the guidance condition leads to the characteristic equation

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2} = \frac{1}{\pi}\tan^{-1}\frac{\sqrt{\sin^2\theta_i - n_2^2/n_1^2}}{\frac{n_2^2}{n_1^2}\cos\theta_i}, \quad m = 0, 1, 2, 3, \dots$$

Note that this result for the TM mode leads to the same f_c expression as in TE modes.



Graphical solution of the characteristic equations for TE and TM modes m=0,1,2,3 in propagation and mode m=4 in evanescence. The blue and red curves depict

$$\frac{1}{\pi} \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2 / n_1^2}}{\cos \theta_i}$$

and

$$\frac{1}{\pi} \tan^{-1} \frac{\sqrt{\sin^2 \theta_i - n_2^2 / n_1^2}}{\frac{n_2^2}{n_1^2} \cos \theta_i}$$

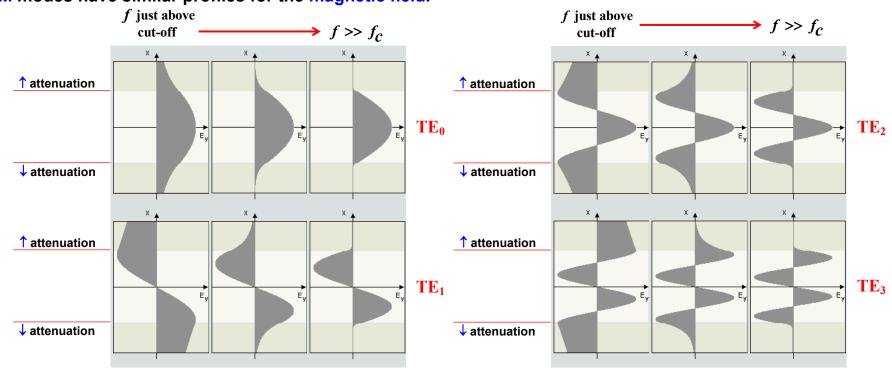
as a function of $\cos \theta_i$ for $n_2 = 1$ and $n_1 = 1.5$, while the straight lines depict

$$\frac{d}{v_1/f}\cos\theta_i - \frac{m}{2}$$

with $\frac{d}{v_1/f} = 2.5$ and m increasing from left to right in steps of one.

Mode structures:

Examples of profiles for the transverse electric field of TE modes. TM modes have similar profiles for the magnetic field.



Acceptance cone and numerical aperture:

Guidance requires

$$\theta_i > \theta_c = \sin^{-1} \frac{n_2}{n_1} = \sin^{-1} \sqrt{\frac{\epsilon_{r2}}{\epsilon_{r1}}}$$

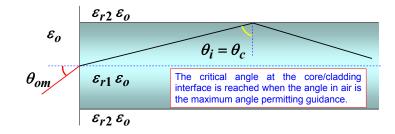
and therefore "acceptence angles" from air (see the diagram below)

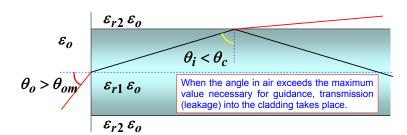
$$\theta_o < \theta_{om} = \sin^{-1} \sqrt{n_1^2 - n_2^2} = \sin^{-1} \sqrt{\epsilon_{r1} - \epsilon_{r2}}$$

where

$$\sin \theta_{om} = \sqrt{n_1^2 - n_2^2} = \sqrt{\epsilon_{r1} - \epsilon_{r2}}$$
 is called **numerical aperture**.

The maximum acceptance angle θ_{om} defines the so-called "acceptance cone" that includes all the external signals incident on the dielectric waveguide that can couple to the waveguide at the air/core interface on a constant-z plane.





At the air-core interface

$$\sin \theta_{ot} = \sqrt{\frac{\varepsilon_{rair}\varepsilon_o}{\varepsilon_{r1}\varepsilon_o}} \sin \theta_o = \sqrt{\frac{1}{\varepsilon_{r1}}} \sin \theta_o$$

$$\theta_i + \theta_{ot} = 90^\circ \implies \cos \theta_{ot} = \sin \theta_i \iff \theta_{ot}$$

At the critical angle

$$\sin \theta_i = \sin \theta_c = \sqrt{\frac{\varepsilon_{r2}}{\varepsilon_{r1}}}$$

$$\sin^2 \theta_{otm} = 1 - \cos^2 \theta_{otm} = 1 - \sin^2 \theta_c = 1 - \frac{\varepsilon_{r2}}{\varepsilon_{r1}} = \frac{\sin^2 \theta_{om}}{\varepsilon_{r1}}$$

$$\Rightarrow \sin \theta_{om} = \sqrt{\varepsilon_{r1} - \varepsilon_{r2}} = \text{numerical aperture}$$

$$\theta_{om} = \sin^{-1} \sqrt{\varepsilon_{r1} - \varepsilon_{r2}}$$