
33 Rectangular cavities
• Consider a rectangular waveguide propagating some TEmn mode having

a longitudinal magnetic field component

H+
z ∝ cos(kxx) cos(kyy)e−jkzz,

where
kx =

mπ

a
, ky =

nπ

b
, and kz =

√
k2 − k2

x − k2
y.

In principle, the same guide can also propagate a TEmn mode field with

H−
z ∝ cos(kxx) cos(kyy)e+jkzz

in reverse direction, and if both waves were present in the guide, we
would have a total field TE mode fields:

H±
x =

∓jkz
∂Hz
∂x

k2 − k2
z

,

H±
y =

∓jkz
∂Hz
∂y

k2 − k2
z

,

E±
y =

jωµo
∂Hz
∂x

k2 − k2
z

,

E±
x =

−jωµo
∂Hz
∂y

k2 − k2
z

.

Hzt = cos(kxx) cos(kyy)(Fe−jkzz + Re+jkzz)

where F and R denote the amplitudes of the forward and reverse waves
depending on sources and/or boundaries in z.

– Of course Ezt = 0 for TEmn modes, while
– transverse field components can be obtained using the equations

shown in the margin (derived in Lecture 29) where the sign of
∓jkz is taken in accordance with the order implied in e∓jkzz for
forward and reverse propagating waves.
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• For a rectangular cavity formed by introducing conducting walls
at z = 0 and z = d within a rectangular waveguide, the pertinent
boundary conditions to be imposed on Hzt become

Hzt(x, y, 0) = 0 and Hzt(x, y, d) = 0

since H cannot be perpendicular to a conducting plate. Accordingly,

1. Hzt(x, y, 0) = 0 requires R = −F , in which case we can write
(taking F=1 for simplicity)

Hzt = cos(kxx) cos(kyy)(e−jkzz − e+jkzz)

= −j2 cos(kxx) cos(kyy) sin(kzz).

2. Hzt(x, y, d) = 0, in turn, requires

kzd = lπ, l = 1, 2, 3 · · ·

excluding l = 0 for non-zero Hzt.

• Hzt(x, y, z) now describes a standing wave pattern within the rectan-
gular cavity, having a periodicity in z where

|Hzt(x, y, z)| ∝ | sin(kzz)|

repeats over z by integer multiples of λz/2, where

λz =
2π

kz
and kz =

lπ

d
, l = 1, 2, 3 · · ·
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• These standing waves are termed TEmnl modes and oscillate with char-
acteristic frequencies

f =
ω

2π
=

√
(
mc

2a
)2 + (

nc

2b
)2 + (

lc

2d
)2 =

c

2

√
(
m

a
)2 + (

n

b
)2 + (

l

d
)2 ≡ fmnl

that follow from

kx =
mπ

a
, ky =

nπ

b
, kz =

lπ

d

implying

k2 =
ω2

c2
= k2

x + k2
y + k2

z = (
mπ

a
)2 + (

nπ

b
)2 + (

lπ

d
)2.

Characteristic frequencies fnml are also known as resonance frequencies
of the cavity, since they represent a discrete set of frequencies for which
source-free field variations are possible within the cavity, in analogy with

1. having source-free voltage variations in an ideal LC circuit at its reso-
nance frequency ω = 1√

LC
, and also in analogy with

2. TL resonators studied in ECE 329 (short or open circuited TL seg-
ments).
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TE mode fields:

H±
x =

∓jkz
∂Hz
∂x

k2 − k2
z

,

H±
y =

∓jkz
∂Hz
∂y

k2 − k2
z

,

E±
y =

jωµo
∂Hz
∂x

k2 − k2
z

,

E±
x =

−jωµo
∂Hz
∂y

k2 − k2
z

.

• Transverse field components of TEmnl resonances can be obtained by
superposing the transverse derivatives of

H±
z = ± cos(kxx) cos(kyy)e∓jkzz

as specified in the margin. We that find

H±
x =

jkzkx sin(kxx) cos(kyy)e∓jkzz

k2 − k2
z

H±
y =

jkzky cos(kxx) sin(kyy)e∓jkzz

k2 − k2
z

E±
y =

∓jωµokx sin(kxx) cos(kyy)e∓jkzz

k2 − k2
z

E±
x =

±jωµoky cos(kxx) sin(kyy)e∓jkzz

k2 − k2
z

which in turn lead to

Hzt = H+
z + H−

z = −j2 cos(kxx) cos(kyy) sin(kzz)

Hxt = H+
x + H−

x =
j2kzkx sin(kxx) cos(kyy) cos(kzz)

k2 − k2
z

Hyt = H+
y + H−

y =
j2kzky cos(kxx) sin(kyy) cos(kzz)

k2 − k2
z

Eyt = E+
y + E−

y =
−2ωµokx sin(kxx) cos(kyy) sin(kzz)

k2 − k2
z

Ext = E+
x + E−

x =
2ωµoky cos(kxx) sin(kyy) sin(kzz)

k2 − k2
z

.
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• Standing waves formed with superposed TMmn mode fields having z-
components

E±
z = sin(kxx) sin(kyy)e∓jkzz

will likewise produce TMmnl mode resonances in rectangular cavities of
dimensions a > b and d having identical resonant frequencies as TEmnl

modes.

• For TMmnl modes with Hzt = 0, a longitudinal standing wave field

Ezt = E+
z + E−

z = sin(kxx) sin(kyy)(e−jkzz + e+jkzz)

leads to transverse field components satisfying the boundary conditions
at z = 0 and z = d provided that

kz =
lπ

d
, l = 0, 1, 2, 3 · · ·

– l = 0 is allowed in this case since kz = 0 does not lead to “incom-
patible” boundary conditions (normal Ez and tangential Hx,y are
allowed on conducting walls at z = 0 and d)

– on the other hand, it is required that m and n are both non-zero,
a property inherited from propagating TMmn modes.
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TM mode fields:

H±
x =

jωεo
∂Ez
∂y

k2 − k2
z

,

H±
y =

−jωεo
∂Ez
∂x

k2 − k2
z

,

E±
y =

∓jkz
∂Ez
∂y

k2 − k2
z

,

E±
x =

∓jkz
∂Ez
∂x

k2 − k2
z

.

• TMmn transverse field components accompanying

E±
z = sin(kxx) sin(kyy)e∓jkzz

can be found from the relations given in the margin. They lead to

H±
x =

jωεoky sin(kxx) cos(kyy)e∓jkzz

k2 − k2
z

H±
y =

−jωεokx cos(kxx) sin(kyy)e∓jkzz

k2 − k2
z

E±
y =

∓jkzky sin(kxx) cos(kyy)e∓jkzz

k2 − k2
z

E±
x =

∓jkzkx cos(kxx) sin(kyy)e∓jkzz

k2 − k2
z

from which

Ezt = E+
z + E−

z = 2 sin(kxx) sin(kyy) cos(kzz)

Hxt = H+
x + H−

x =
j2ωεoky sin(kxx) cos(kyy) cos(kzz)

k2 − k2
z

Hyt = H+
y + H−

y =
−j2ωεokx cos(kxx) sin(kyy) cos(kzz)

k2 − k2
z

Eyt = E+
y + E−

y =
−2kzky sin(kxx) cos(kyy) sin(kzz)

k2 − k2
z

Ext = E+
x + E−

x =
−2kzkx cos(kxx) sin(kyy) sin(kzz)

k2 − k2
z

.
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– Notice that Ext = 0 and Eyt = 0 at both z = 0 and z = d provided
that kzd = lπ, as claimed earlier on.

– Furthermore l = 0 does not lead to a trivial field since in that case
Ezt, Hxt, and Hyt are non vanishing!

• Summarizing the results from above, in a rectangular cavity of dimen-
sions a > b and d and conducting walls, resonant field oscillations at
distinct set of frequencies

fmnl =
c

2

√
(
m

a
)2 + (

n

b
)2 + (

l

d
)2

are possible, so long as at least two of the indices m, n, and l are non
zero.

– For TEmnl resonances m = 0 or n = 0 are permitted,
– For TMmnl resonances only l = 0 is permitted,
– A resonance of frequency fmnl is is said to be non-degenerate if it

is allowed for a single mode and it is degenerate otherwise.
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• Practical uses of cavities:

1. Cavities with small apertures on their walls will interact strongly
with external signals (suck them in) having oscillation frequencies
matching one of the resonant frequencies, and, conversely, weakly
at off-resonant external frequencies. This leads to the usage of
cavities as “frequency meters”.

2. Dielectric filled cavities will have resonant frequencies

fmnl =
vp

2

√
(
m

a
)2 + (

n

b
)2 + (

l

d
)2 where vp =

1
√

µε
.

Measuring the resonant frequencies of a dielectric-filled cavity is a
very accurate means of determining √

µε.
3. Cavities filled with active media or devices are a common way of

configuring practical signal sources — e.g., lasers.
4. Microwave ovens are essentially resonant cavities excited by (cou-

pled to) a source operating near some of the resonant frequencies
of the cavity that establishes a reasonably smooth field structure
where the food is to be placed.

• Our analysis of cavities and waveguides have been based on the as-
sumption of perfectly conducting walls, so far. Waveguide and cavity
walls will in practice be very good but imperfect conductors. The im-
plications of this are:
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1. Propagating waveguide modes will be weakly attenuated as the
field energy is lost into the walls to drive ohmic currents within a
few skin-depths of the metallic surface. Recall from ECE 329, Lec-

ture 26:

Power loss per unit area of a
conductor with an equivalent
surface current J̃s is

Sloss =
1

2
Rs|J̃s|2

where

Rs =

√
ωµ

2σ

is the surface resistor of the

conductor in terms of con-

ductivity σ, permeability µ,

and frequency ω.

In our idealization of the walls as “perfect conductors”, we refer to
the depth integral of these volumetric current densities as “surface
current densities”. In general, an equivalent surface current J̃s on
a wall will deliver an average power of

Sloss =
1

2
Rs|J̃s|2 =

1

2

√
πfµ

σ
|J̃s|2

W
m2

to be dissipated per unit area of the wall (see margin and the ECE
329 notes).

2. Cavity mode oscillations at frequencies fmnl will be damped as a
function of time if not “replenished”. The rate of energy loss Ploss

can be calculated by integrating

Sloss =
1

2

√
πfmnlµ

σ
|J̃s|2

W
m2

over the 6 cavity walls where at each wall we use |J̃s|2 = |H̃tangential|2.
Decay time-constant of the stored mode-energy W , the volume in-
tegral of 1

4εo|Ẽ|2 + 1
4µo|H̃|2 within the cavity, is then given by the

ratio
τmnl =

W

Ploss
.
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3. Given the energy dissipation rate τmnl and the resonant frequency
ωmnl, the product

Q ≡ ωmnlτmnl

is known as quality factor. Highly damped modes have small Q,
while a high-Q is an indicator of a low-loss cavity.
Review the concept of Q from your ECE 210 notes (see Chpt 12).

4. In cavities with lossy walls in thermal equilibrium (i.e., at a
steady temperature) it is observed that the average stored energy
does not change with time despite the losses in the walls. What
that means is that the lossy walls must be radiating as much as
they absorb on the average.
The phenomenon of cavity radiation from lossy walls in thermal
equilibrium — related to blackbody radiation as well as thermal
resistor noise — will explored in the next lecture.

Example 1: Determine fnml and Q = τmnlωmnl for an air-filled rectangular cavity with a = b = d = 2
cm in TE101 mode.

Solution: For TEm0l modes ky = 0 and the field expressions derived earlier simplify as

Hzt = −j2 cos(kxx) cos(kyy) sin(kzz) → −j2 cos(kxx) sin(kzz)

Hxt =
j2kzkx sin(kxx) cos(kyy) cos(kzz)

k2 − k2
z

→ j2kz sin(kxx) cos(kzz)

kx

Hyt =
j2kzky cos(kxx) sin(kyy) cos(kzz)

k2 − k2
z

→ 0
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Eyt =
−2ωµokx sin(kxx) cos(kyy) sin(kzz)

k2 − k2
z

→ −2ωµo sin(kxx) sin(kzz)

kx

Ext =
2ωµoky cos(kxx) sin(kyy) sin(kzz)

k2 − k2
z

→ 0.

Therefore, we have

〈1
2
εoE · E〉 = εo

|Ẽ|2

4
=

εoω2µ2
o sin2(kxx) sin2(kzz)

k2
x

and

〈1
2
µoH · H〉 = µo

|H̃|2

4
= µo[cos2(kxx) sin2(kzz) +

k2
z sin2(kxx) cos2(kzz)

k2
x

].

Volume integrals of these in a cavity with a = b = c replace each trigonometric product in
above expressions with a3/4 and thus we obtain

W =
a3

4
[
εoω2µ2

o

k2
x

+ µo[1 +
k2

z

k2
x

]] =
a3

2

k2µo

k2
x

after using k2 = ω2µoεo. Also with a = b = c we have k2
x = k2

z = k2/2 for TE101 mode, and
hence

W = a3µo.

For surface currents on cavity walls we have, on top and bottom walls (x = 0 and x = a),

|J̃s|2 = |H̃z|2 + |H̃y|2 = 4 sin2(kzz) + 0

on left and right walls (y = 0 and y = b = a),

|J̃s|2 = |H̃z|2 + |H̃x|2 = 4 cos2(kxx) sin2(kzz) +
4k2

z sin2(kxx) cos2(kzz)

k2
x

and on front and back walls (z = 0 and z = d = a),

|J̃s|2 = |H̃x|2 + |H̃y|2 =
4k2

z sin2(kxx)

k2
x

+ 0.

Integrating these three expressions over their surfaces, multiplying by 2 (two walls per each
expression), and finally scaling by Rs/2, we obtain power loss in the walls as

Ploss = Rsa
2[2 + 1 +

k2
z

k2
x

+
2k2

z

k2
x

] = Rsa
2[2 + 1 + 1 + 2] = 6Rsa

2.
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Finally

τ =
W

Ploss
=

a3µo

6Rsa2
=

aµo

6Rs
=

aµo

6
√

ωµo

2σ

=
a

6

√
2σµo

ω
⇒ ωτ =

a

6

√
2ωσµo

where ω is the resonance frequency for TE101 mode satisfying

k2 =
ω2

c2
= k2

x + k2
y + k2

z = 2(
π

a
)2 ⇒ ω =

√
2
cπ

a
≡ ω101.

Substituting for ω above, we find that

ωτ =
a

6

√
2ωσµo =

a

6

√
2
√

2
cπ

a
σµo =

1

6

√
2
√

2cπaσµo

which yields for a cavity with copper walls (σ = 6 × 107 S/m)

Q = ωτ =

√
2
√

2

6

√
3 × 108 × π × 2 × 10−2 × 6 × 107 × 4π × 10−7

=

√
2
√

2

6

√
144π2 × 106 =

√
2
√

2

6
12π × 103 ≈ 10.56 × 103 ∼ 104.

Also, the resonant frequency of the mode is

f101 =
ω101

2π
=

√
2 cπ

a

2π
=

c√
2a

=
3 × 108

√
22 × 10−2

=
30

2
√

2
GHz ≈ 10 GHz.

• The result Q = τω ∼ 104 from Example 1 indicates that the mode oscillates through
104/2π > 103 cycles over a time period in which the mode energy decays by one
e-fold.
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