
34 Resonant modes and field fluctuations
• Since in a rectangular cavity the resonant frequencies
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we can consider 2fmnl/c to be the “length” of a “vector” (ma ,
n
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d) point-

ing away from the origin of a “3D Cartesian space” where each lattice
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n
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1
d), is associated with two resonant modes

(TE and TM) of the cavity.

– In this space, “volume” per lattice point is 1
abd , and thus volume

per resonant mode is 1/2
abd .

– Also, all the resonant modes with resonance frequencies fmnl less
than a given frequency f can be associated with lattice points
residing within one eight (an octant) of a sphere of “radius” 2f/c
centered about the origin of the same space — only an octant is
involved since the indices m, n, l employed are all non-negative.

Thus, the number of resonant modes with frequencies less than f , to
be denoted as the cumulative distribution C(f), is found to be
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where V = abd is the physical volume of the cavity. Consequently, the
number density N(f) of the available resonant modes in a cavity of
volume V is obtained as

N(f) =
dC

df
=

8πf 2

c3
V modes

Hz

which grows quadratically with frequency f . As illustrated later in this
lecture, the distribution N(f) has deep theoretical implications.

Example 1: Consider a rectangular cavity with dimensions a = b = d = 0.3 m.
Determine N(f) for f = 50 GHz and the number of resonant modes to be found
within a bandwidth of ∆f = 1 GHz centered about f = 50 GHz.

Solution: Using the density function derived above, we find that

N(50× 109) =
8π(50× 109)2

(3× 108)3
(3× 10−1)3 = 8π× 25× 10−7 = 2π× 10−5 modes

Hz
.

Thus, the number of resonant modes in a bandwidth of ∆f = 1 GHz centered
about f = 50 GHz is

Number of modes within band = (2π×10−5 modes
Hz

)×109 Hz = 20000π ≈ 60000.
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Energy spectrum of radiation in enclosed cavities:
• Consider an air-filled rectangular cavity with slightly lossy walls sitting

on a table top in some lab where the room temperature is 300 K.
Assume that the cavity has been in the room for a long time and has
reached thermal equilibrium with the rest of the room — i.e., the walls
of the cavity also have T = 300 K.
It turns out that such a cavity will be filled with electromagnetic fields
consisting of (i.e., a superposition of) the TEmnl and TMmnl modes
distributed across the frequency space with a density function

N(f) =
8πf 2

c3
V

derived above.

– The resonant modes with the distribution function just quoted are
the result of radiation by random currents flowing on the cavity
walls caused by random thermal agitations of the charge carriers
located within the walls.

– As soon as it is (randomly) established, a resonant mode will start
decaying because of ohmic losses in cavity walls (see earlier dis-
cussions), returning back the radiated energy of the wall back to
the wall.

– In thermal equilibrium the temperature of the wall as well as the
expected total energy of cavity radiation summed over all of its
modes will remain constant.
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• The energy density spectrum of the radiation within the cavity, E(f),
measured in units of J/m3/Hz, should be product of N(f)/V with
〈W (f)〉 representing the expected value (statistical average) of the en-
ergy W (f) of each mode at resonant frequency f . Hence,

E(f) =
8πf 2

c3
〈W (f)〉.

• What might be the expected mode energy 〈W (f)〉?

• Each resonant mode such as TE101 or TM112 can be interpreted as two
degrees of freedom (one degree for E and one for H) of the electromag-
netic field variations in a closed cavity, just as velocity components vx,
vy, vz of any one of N molecules contained within a volume of gas are
each considered a “degree of freedom” for the N molecule system.

– In physical models each degree of freedom in a gas in thermal
equilibrium is assigned1 an expected energy of

〈1
2
mv2x〉 =

1

2
KT

where K ≡ 1.38× 10−23 J/K is Boltzmann’s constant and T is the
equilibrium temperature in K.

1In thermal equilibrium all particles have by definition equal average energies. Denoting this energy as
1
2KT is just a matter of defining the equilibrium temperature of the gas in terms the average kinetic
energy of its individual molecules — at a fundamental level that is what temperature is! Including the
Boltzmann constant K in this assignment is just a matter of setting the scale used for temperature (Kelvin
scale by convention). At room temperature (298 K), KT works out to be 0.0256 eV.
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• If we naively make a similar assignment (see margin note) to 〈W (f)〉, 1
2KT per quadratic term:

Assigning an expected energy of
1
2KT per quadratic term in a to-

tal energy expression of a large

system of elements in thermal

equilibrium is a standard pro-

cedure used in classical statisti-

cal mechanics. This is a conse-

quence of well known experimen-

tal results such as: in a gas con-

sisting of a mixture of light and

heavy atoms, 〈12mV 2
x 〉 of the light

atoms match 〈12Mv2x〉 of the heavy

atoms in thermal equilibrium —

all quadratic energy terms get the

same 1
2KT (clasically)!

e.g., take
〈W (f)〉 = KT

(on account of the fact that TEmnl and TMmnl modes have energies
which are the sum of two quadratic terms proportional to |Ẽ|2 and
|H̃|2), we then immediately run into a difficulty in that E(f) blows
up to infinity in the high frequency end because 〈W (f)〉 has no high-
frequency cutoff.

• The difficulty just mentioned — known as “ultraviolet catastrophe” —
was well recognized at the beginning of the 20th century, and was re-
solved by Max Planck’s recognition that electromagnetic mode energies
W (fmnl) have to be quantized in chunks of size hfmnl, and

〈W (fmnl)〉 = KT

is acceptable only if an “energy quantum” hfnml ( KT .

If hfnml ) KT for a given mode, then the mode is very seldom excited
(to an energy level of one hfnml), and thus the expected value of energy
W (fmnl) in the mode is an exponentially reduced fraction of an energy
quantum hfnml given by

〈W (fmnl)〉 = hfmnl e
−hfmnl/KT .

This effective “cutoff” in 〈W (f)〉 function eliminates the ultraviolet
catastrophe.

5



Shape independence:
E(f) obtained for the rectangu-
lar cavity is actually independent
of cavity shape. This can be jus-
tified by considering two cavities,
one rectangular, one not, joined
by a small aperture. If the two
cavities have the same temper-
ature T , then by definition (of
T ) there cannot be any net en-
ergy exchange between the cavi-
ties at any f (a detailed balance
per frequency is required because
the aperture may have an f de-
pendent transmittivity) — hence
a common E(f) for the two cavi-
ties with a common T even if the
shapes are different!

E(f) is also independent of the

lossiness of the walls (even though

Q of the cavity depends on it)

and therefore applicable to all

lossy cavities at thermal equilib-

rium including those whose walls

are perfect absorbers , i.e., black-

bodies.

– Using the 1st and 2nd laws of thermodynamics together with
the quantization rule that he introduced, Planck derived2 the
relation

〈W (fmnl)〉 =
hfmnl

ehfmnl/KT − 1
for the expected mode energies having the limiting cases for

hfnml ( KT and hfnml ) KT

just discussed.
– With this result, the energy spectrum within a cavity in thermal

equilibrium takes the form

E(f) =
N(f)

V
〈W (f)〉 = 8πf 2

c3
hf

ehf/KT − 1

J/m3

Hz
.

This derived spectral shape was successfully adjusted to fit the
observed energy spectra of cavity radiation by varying the param-
eter h, which is now known as Planck’s constant3 and has the fixed
value of 6.626× 10−34 Js.

2See Oliver, B. M., “Thermal and Quantum Noise”, Proc IEEE, 53, 436 (1965) for a simplified version
of Planck’s derivation.

3Planck’s constant h is one of the three fundamental constants of physics, along with c and G, the
gravitational constant, from which absolute units for all physical variables can be derived in suitable
combinations: e.g., length unit=

√
hG/c3, time unit=

√
hG/c5, etc.
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