
35 Cavity radiation and thermal noise
Cavity radiance: Energy den-
sity
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in a 3D cavity in thermal equi-
librium resides by equal amounts
in the traveling wave components
of the cavity modes arriving with
speed c from the boundaries of
the cavity subtending 4π sterads.
Multiplying E(f) by c/4π we ob-
tain
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which is called radiance and rep-
resents the power density per unit
solid angle of the waves traveling
within the cavity.

Radiance L(f) also represents the

spectrum of power radiated per

unit solid angle by a unit area of

a blackbody surface at temper-

ature T (since non-reflective walls

of a cavity will produce the same

E(f) as partial-reflecting walls as

mentioned earlier).

• In a 1D cavity of some length L — e.g. a TL with shorts at both ends
as discussed in ECE 329 notes — the resonant frequencies are

fm =
c

λm
=

c

2L/m
=

c

2L
m, where m = 1, 2, 3, · · ·

which indicates that the mode density in f is

N(f) =
2L

c
modes

Hz .

Therefore the energy density in a 1D cavity in thermal equilibrium
(assume vanishingly lossy wires with temperature T ) will be

E(f) =
N(f)

L
〈W (f)〉 =

2

c

hf

ehf/KT − 1

J/m

Hz
in analogy with the energy density of 3D cavities. This energy density
will reside by equal amounts in the traveling wave components of the
1D resonant modes arriving with speed c from the opposite ends of the
1D resonator. Power spectral content P (f) of each of these traveling
wave components can thus be calculated as c/2 times1 E(f), i.e.,

P (f) =
hf

ehf/KT − 1

W

Hz
.

1Note that per TEM plane wave,

c(
1

4
εo ˜|E|

2 +
1

4
µo

˜|H|2) =
˜|E|2

4ηo
+ ηo

˜|H|2

4
=

˜|E|2

2ηo
,

which confirms that the time-averaged stored energy density times c is indeed the time-averaged power
transported per unit area.
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Unmatched termination case:
If R $= Zo, then a portion
P (f)|Γ|2 of the incident power
P (f) will be reflected from R
(rather than being fully ab-
sorbed). In that case R emits
only a reduced level of power
P (f)(1 − |Γ|2). This is a simple
example of how P (f) can be emit-
ted in its entirety only by perfect
absorbers defined to be black-
bodies. In 1D, the blackbody ra-
diance at temperature T is

P (f) =
hf

ehf/KT − 1

W

Hz

while in 3D it is

L(f) =
2f 2

c2
hf

ehf/KT − 1

W/m2/ster

Hz
.

• Now replace the shorts at the ends of the resonator with resistors R at
temperature T matching the characteristic impedance Zo of the line.

Since there cannot be any net power exchange between elements in ther-
mal equilibrium (over any frequency band — otherwise a net broadband
exchange can be arranged for by using filters with suitable frequency
responses in violation of the 2nd law of thermodynamics), it follows
that matched resistors R will be both absorbing (a full absorption be-
cause of impedance matching) and injecting (to a matched load again
because of the same fact) the same power density P (f) identified above.

• The upshot is, we need to conclude that any resistor R at a temperature
T must have an available power density of

P (f) =
hf

ehf/KT − 1

W

Hz

fueled by thermal agitation of its internal charge carriers. The resistor
is then capable of outputting an average power of

P (f)∆f =
hf

ehf/KT − 1
∆f ≡

〈v2〉

4R

over a bandwidth ∆f , where 〈v2〉 is the mean squared open-circuit

voltage at the resistor terminals over the same bandwidth.
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• It follows that

〈v2〉

4R
=

hf∆f

ehf/KT − 1
reducing to

〈v2〉

4R
= KT∆f for hf & KT,

a result known as Nyquist noise theorem. The theorem can also be
cast as

〈i2〉

4G
=

hf∆f

ehf/KT − 1
reducing to

〈i2〉

4G
= KT∆f for hf & KT

in terms of mean squared short-circuit current 〈i2〉 of the same resistor
over the same bandwidth and conductance G = 1/R. Note that if the
element has an impedance Z = R+ jX = 1/Y only the real part of Z
should be utilized in connection with power transferred to a matched
load Z∗.

• Nyquist noise theorem outlined above has a very powerful generaliza-
tion known as the fluctuation-dissipation theorem:

– according to this theorem, any linear and dissipative system in
thermodynamic equilibrium will exhibit thermally driven fluctua-
tions of its dynamic parameters (e.g., electron density in plasma
at finite temperature), and

– the frequency spectrum of the fluctuations can be obtained by ap-
plying the Nyquist noise theorem to an appropriately constructed
equivalent circuit model of the system.
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• The unavoidable fact of fluctuations and noise encountered in dissipa-
tive systems and circuits constitutes both a challenge and an oppor-
tunity for the engineer. Consider taking ECE 453 to develop a better
understanding of noise issues in communication circuits.

t = 0

R

1

jωC

vc(t)

+

-

(a) Initial value problem:

(b) Frequency domain Thevenin
model of a noisy resistor:

+-
R

Ṽ

Example: Consider the RC circuit shown in the margin. Assuming that the capacitor
holds 10 V prior the switch is closed at t = 0, the capacitor voltage for t > 0 can
be expressed as

vc(t) = 10e−t/RC

using ECE 210 knowledge. This solution implies the dissipation of the initial
stored energy within the resistor. But as we have seen in this lecture, dissipative
elements such as resistors also produce random thermal voltages and currents.
We therefore expect a non-zero vc(t) in the circuit shown in the margin as t →
∞, assuming that the resistor has some non-zero steady-state temperature T
measured in Kelvins. Given that the resistor produces an open circuit voltage
v(t) with a mean-squared value of

〈v2〉 = 4RKT∆f (Nyquist noise formula)

over any bandwidth ∆f , let us calculate the mean-squared capacitor voltage 〈v2c 〉
in the circuit over all frequencies f .

Calculation: The Thevenin equivalent circuit modeling the noisy resistor in the phasor
domain is shown in the margin. The model includes a source voltage phasor Ṽ .
A capacitor C with impedance Zc =

1

jωC connected across the terminals of the
equivalent model circuit will develop a phasor voltage

Ṽc = Ṽ
Zc

R + Zc
= Ṽ

1

1 + jωRC
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as dictated by voltage division. The mean-squared value of a co-sinusoidal oscil-
lation vc(t) = Re{Vcejωt} with the phasor Vc would then be

1

2
|Ṽc|

2 =
1

2
|Ṽ |2

1

|1 + jωRC|2
≡

1

2
|Ṽ |2||H(f)|2

where 1

2
|Ṽ |2 is the mean-squared value of open circuit voltage v(t) of the resistor

and

|H(f)|2 =
1

|1 + j2πfRC|2
=

1

1 + (2πfRC)2

is a frequency dependent scaling factor — the magnitude square of the frequency
response function of the circuit — between the two mean-square quantities.

Now, the mean-squared voltage output

〈v2〉 = 4RKT∆f (Nyquist noise formula)

of the noisy resistor over a small but finite bandwidth ∆f can be scaled likewise
to obtain

〈v2c 〉 = 〈v2〉|H(f)|2 =
4RKT∆f

1 + (2πfRC)2
,

the mean-squared voltage output across the capacitor over the same bandwidth
provided that |H(f)|2 is fairly constant over the band. For wider bands where
the constancy condition is violated, use

〈v2c 〉 =

∫ f2

f1

4RKT

1 + (2πfRC)2
df,

whereas the broadband value over all frequencies (with f1 → 0 and f2 → ∞) is

〈v2c 〉 =

∫ ∞

0

4RKT

1 + (2πfRC)2
df =

KT

C
,

a value independent of R.
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For a 1 pF capacitor K = 1.38× 10−23 J/K and T = 300 K gives an rms (root mean
squared) voltage of

〈v2c 〉
1/2 =

KT

C
≈ 0.65mV,

easily detected in the lab.
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