36 Antenna reception and links

Elementary description of antenna reception and links:

- Consider a pair of identical short dipole antennas in free space, one located at the origin $(x, y, z)=(0,0,0)$ and the other at a distance r away from the origin at zenith and azimuth angles of (θ, ϕ) as shown in the margin. Furthermore:
- ant. 1 at the origin, e.g. a \hat{z}-polarized short-dipole, sees ant. 2 located at angles (θ, ϕ), but
- ant.2's orientation is adjusted so that it always sees ant. 1 at fixed angles of, say, $\left(\theta_{2}, \phi_{2}\right)=\left(90^{\circ}, 0\right)$, defined in its own coordinate system, for all possible locations (r, θ, ϕ).
- First, ant. 1 is driven with an input current (phasor) I_{t} and a timeaverage input power

$$
P_{t}=\frac{1}{2}\left|I_{t}\right|^{2} R_{r a d},
$$

while ant.2, terminated by a resistor R, puts a current I_{r} through R into which it delivers an average power

$$
P_{r}=\frac{1}{2}\left|I_{r}\right|^{2} R \equiv S_{i n c} A\left(\theta_{2}, \phi_{2}\right)
$$

where:
1.

$$
S_{i n c}=\frac{P_{t}}{4 \pi r^{2}} G(\theta, \phi)
$$

is the incident power density (the magnitude of the time-average Poynting vector) of the field arriving from ant. 1 expressed in terms of the antenna gain $G(\theta, \phi)$ evaluated in the angular direction of ant.2, and
2. $A\left(\theta_{2}, \phi_{2}\right)$ is called the antenna effective area and is defined to be the conversion factor between the received power $P_{r}(\mathrm{~W})$ and the incident power density $S_{\text {inc }}\left(\mathrm{W} / \mathrm{m}^{2}\right)$.

Our aim is to identify the effective area function $A(\theta, \phi)$ in terms of the antenna gain function $G(\theta, \phi)$ and two constraints, one regarding R, and the other regarding the antenna polarization.
Once that is accomplished, the receiving properties of antennas will be relatively easy to understand.

- Combining the expressions above we note that

$$
P_{r}=\frac{P_{t}}{4 \pi r^{2}} G(\theta, \phi) A\left(\theta_{2}, \phi_{2}\right) .
$$

- Now, swap the source I_{t} and the termination resistance R between the two (identical) sets of antenna terminals, so that now ant. 2 becomes the "transmitter" and ant. 1 is the "receiver".

Power received by ant. 1 in response to $S_{\text {inc }}$ from ant. 2 in that case can be expressed as

$$
P_{r}=\frac{P_{t}}{4 \pi r^{2}} G\left(\theta_{2}, \phi_{2}\right) A(\theta, \phi)
$$

by using similar arguments - in this expression $G\left(\theta_{2}, \phi_{2}\right)$ is the antenna gain in the direction of ant. 1 as seen by ant.2, whereas $A(\theta, \phi)$ is the antenna effective area for the direction ant. 2 appears with respect to ant.1.

Since the two cases considered above are in essence identical - in each case the receiving antenna is exposed to the same tangential field arriving from the transmitting antenna - the very same power P_{r} must be received by R in each case; hence, it is necessary that

$$
G(\theta, \phi) A\left(\theta_{2}, \phi_{2}\right)=G\left(\theta_{2}, \phi_{2}\right) A(\theta, \phi),
$$

for all possible (θ, ϕ), implying that

$$
\frac{A(\theta, \phi)}{G(\theta, \phi)}=\frac{A\left(\theta_{2}, \phi_{2}\right)}{G\left(\theta_{2}, \phi_{2}\right)}=\text { const. }
$$

Therefore, we conclude that for short dipole antennas, the effective area function must be given as

$$
A(\theta, \phi)=K_{a} G(\theta, \phi),
$$

where K_{a} is a scaling constant independent of (θ, ϕ) that remains to be determined.

- Later we will show that the required scaling is

$$
K_{a}=\frac{\lambda^{2}}{4 \pi} \Rightarrow A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G(\theta, \phi)
$$

not only for short-dipoles, but for all types of antennas ${ }^{1}$.

That is a crucial finding which implies that the reciprocal relation of P_{r} to P_{t} found above between the cases when the transmitting and receiving roles of identical short-dipoles are swapped, will also be valid even when the antennas are non-identical (e.g., antenna 1 a short dipole, antenna 2 a broadside 1D array of half-wave dipoles).
We can then succinctly express the reciprocal relation in the form

$$
P_{r}=P_{t} \frac{\lambda^{2} G_{t} G_{r}}{(4 \pi r)^{2}}, \quad \text { (Friis transmission formula) }
$$

where G_{t} and G_{r} refer to the gain of the (arbitrary) antennas used for transmission and reception in the directions of direct contact between the antennas in any communications link, whereas P_{r} and P_{t} are, respectively, the average power transmitted and the average available power of the receiving antenna.

- Reciprocity is a convenient property of antenna behaviour because it allows for one of the link antennas to be a low-gain antenna at

[^0]$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G(\theta, \phi)
$$

Friis formula and transmission gain

$$
\frac{P_{r}}{P_{t}}=\frac{\lambda^{2} G_{t} G_{r}}{(4 \pi r)^{2}}
$$

the expense of the gain of the second antenna, for a fixed value of overall transmission gain P_{r} / P_{t}.

Example 1:

1. Consider a \hat{z}-polarized short-dipole antenna at the origin terminated by a load

Because $Z_{L}=Z_{a}^{*}$ (and not an arbitrary R - see margin) we will be able to compute the time-averaged power P_{r} delivered by the antenna into the load Z_{L} using the simple procedure explained at the end of this example (based on the ideas already developed above).
2. Also consider the same \hat{z}-polarized short-dipole antenna responding to incident plane TEM waves which have electric field vectors polarized in $\hat{\theta}$ direction.
Because the polarization direction $\hat{\theta}$ of the incident electric field is copolarized with the receiving antenna, we will be able to compute P_{r} using the simple procedure explained next.

To compute the time-averaged power P_{r} delivered by the \hat{z}-polarized antenna to its matched termination $Z_{L}=Z_{a}^{*}$ it is sufficient to multiply

$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G(\theta, \phi)
$$

with

$$
S_{i n c}=\frac{\left|\tilde{\mathbf{E}}_{i n c}\right|^{2}}{2 \eta}
$$

that is

$$
P_{r}=S_{i n c} A(\theta, \phi) .
$$

Had it been the case that $Z_{L} \neq Z_{a}^{*}$ or the polarization of the electric field not $\hat{\theta}$, the formula for P_{r} would have been different.

Example 2: This is one possible receiving scenario compatible with what was described in Example 1.

The incident TEM wave field is

$$
\tilde{\mathbf{E}}_{i n c}=120 \pi \frac{\hat{z}-\hat{x}}{\sqrt{2}} e^{j 2 \pi(x+z)} \mathrm{V} / \mathrm{m} .
$$

This field has a wave vector

$$
\mathbf{k}=-2 \pi(\hat{x}+\hat{z}) \mathrm{rad} / \mathrm{m},
$$

indicating the antenna sees the incident wave coming from direction $\theta=45^{\circ}$ with a polarization direction $\hat{\theta}$. Since

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{|\mathbf{k}|}=\frac{2 \pi}{2 \pi \sqrt{2}}=\frac{1}{\sqrt{2}} \mathrm{~m}
$$

and

$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G\left(45^{\circ}, \phi\right)=\frac{1 / 2}{4 \pi} \underbrace{\left(\frac{3}{2} \sin ^{2} 45^{\circ}\right)}_{\text {short-dipole gain at } 45^{\circ}}=\frac{1.5}{16 \pi} \mathbf{m}^{2},
$$

and, furthermore,

$$
S_{i n c}=\frac{\left|\tilde{\mathbf{E}}_{i n c}\right|^{2}}{2 \eta}=\frac{(120 \pi)^{2}}{2 \times 120 \pi}=60 \pi \mathrm{~W} / \mathrm{m}^{2}
$$

it follows that

$$
P_{r}=S_{\text {inc }} A(\theta, \phi)=60 \pi \times \frac{1.5}{16 \pi}=\frac{90}{16} \mathrm{~W} .
$$

Assuming that the antenna is terminated with a matched load, it will deliver a time-averaged power of $90 / 16 \mathrm{~W}$ to its load.

Example 3: Another scenario compatible with what was described in Example 1.
The incident TEM wave field is

$$
\tilde{\mathbf{E}}_{i n c}=120 \pi \hat{z} e^{j 2 \pi x} \mathrm{~V} / \mathrm{m} .
$$

This field has a wave vector

$$
\mathbf{k}=-2 \pi \hat{x} \mathrm{rad} / \mathrm{m},
$$

indicating the antenna sees the incident wave coming from direction $\theta=90^{\circ}$ with a polarization direction $\hat{\theta}$. Since

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{|\mathbf{k}|}=\frac{2 \pi}{2 \pi}=1 \mathrm{~m}
$$

and

$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G\left(90^{\circ}, \phi\right)=\frac{1}{4 \pi} \underbrace{\left(\frac{3}{2} \sin ^{2} 90^{\circ}\right)}_{\text {short-dipole gain at } 90^{\circ}}=\frac{3}{8 \pi} \mathbf{m}^{2}
$$

and, furthermore,

$$
S_{i n c}=\frac{\left|\tilde{\mathbf{E}}_{i n c}\right|^{2}}{2 \eta}=\frac{(120 \pi)^{2}}{2 \times 120 \pi}=60 \pi \mathrm{~W} / \mathrm{m}^{2}
$$

it follows that

$$
P_{r}=S_{i n c} A(\theta, \phi)=60 \pi \times \frac{3}{8 \pi}=\frac{90}{4} \mathrm{~W} .
$$

Assuming that the antenna is terminated with a matched load, it will deliver a time-averaged power of 22.5 W to its load.

Example 4: This scenario is incompatible with what was described in Example 1.
The incident TEM wave field is

$$
\tilde{\mathbf{E}}_{i n c}=120 \pi \hat{y} e^{j 2 \pi x} \mathrm{~V} / \mathrm{m} .
$$

This field has a wave vector

$$
\mathbf{k}=-2 \pi \hat{x} \mathrm{rad} / \mathrm{m},
$$

indicating the antenna sees the incident wave coming from direction $\theta=90^{\circ}$. But the polarization direction of the wave is not $\hat{\theta}$, it is $\hat{\phi}$. Therefore, even though we have

$$
\lambda=\frac{2 \pi}{k}=\frac{2 \pi}{|\mathbf{k}|}=\frac{2 \pi}{2 \pi}=1 \mathrm{~m}
$$

and

$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G\left(90^{\circ}, \phi\right)=\frac{1}{4 \pi} \underbrace{\left(\frac{3}{2} \sin ^{2} 90^{\circ}\right)}=\frac{3}{8 \pi} \mathbf{m}^{2}
$$

$$
\text { short-dipole gain at } 90^{\circ}
$$

we need to conclude that

$$
P_{r}=S_{\text {inc }} A(\theta, \phi)=0
$$

because $S_{\text {inc }}$ that needs to be associated with a $\hat{\theta}$-polarized field is zero!

- In Example 4 the incident field is cross-polarized with the receiving antenna and therefore there is no power transfer to the matched termination of the antenna.
- By contrast, in Examples 2 and 3 the incident fields were copolarized with the receiving antenna and therefore average power calculation to the matched antenna termination was accomplished by following the recipe given in Example 1.

Try understanding the meaning of co- and cross-polarized incident fields.
An incident field is said to be co-polarized when its electric field vector is aligned with the field the receiving antenna would radiate if it were being used in transmission mode !!!

- In the upcoming lectures we will verify the important ideas introduced in this lecture - namely

1. The matched impedance concept,
2. Co- and cross-polarized signals,
3. The effective area $A(\theta, \phi)$ and the relation

$$
A(\theta, \phi)=\frac{\lambda^{2}}{4 \pi} G(\theta, \phi)
$$

4. Friis transmission formula

$$
P_{r}=P_{t} \frac{\lambda^{2} G_{t} G_{r}}{(4 \pi r)^{2}}=P_{t} \frac{A_{t} A_{r}}{(\lambda r)^{2}}
$$

[^0]: ${ }^{1}$ However, this result for K_{a} requires the termination R to be a "matched load" to the antenna and also effective area $A(\theta, \phi)$ be defined for the reception of the "co-polarized" component of the incident field. The concepts of a matched load and a co-polarized field will be explained in detail later on.

