36 Antenna reception and links

Elementary description of antenna reception and links:

- Consider a pair of *identical* short dipole antennas in free space, one located at the origin (x, y, z) = (0, 0, 0) and the other at a distance r away from the origin at zenith and azimuth angles of (θ, ϕ) as shown in the margin. Furthermore:
 - ant.1 at the origin, e.g. a \hat{z} -polarized short-dipole, sees ant.2 located at angles (θ, ϕ) , but
 - ant.2's orientation is adjusted so that it always sees ant.1 at fixed angles of, say, $(\theta_2, \phi_2) = (90^\circ, 0)$, defined in its own coordinate system, for all possible locations (r, θ, ϕ) .
- First, ant.1 is driven with an input current (phasor) I_t and a time-average input power

$$P_t = \frac{1}{2} |I_t|^2 R_{rad}$$

while ant.2, terminated by a resistor R, puts a current I_r through R into which it delivers an average power

$$P_r = \frac{1}{2} |I_r|^2 R \equiv S_{inc} A(\theta_2, \phi_2)$$

where:

Current I_r that flows through the resistor R connected across the antenna terminals is induced by the tangential components of incident wave fields on the conducting arms of the dipole antenna; this response is a straightforward consequence of the need to maintain tangential boundary conditions on the antenna surface.

1

1.

$$S_{inc} = \frac{P_t}{4\pi r^2} G(\theta,\phi)$$

is the incident power density (the magnitude of the time-average Poynting vector) of the field arriving from ant.1 expressed in terms of the antenna gain $G(\theta, \phi)$ evaluated in the angular direction of ant.2, and

2. $A(\theta_2, \phi_2)$ is called the **antenna effective area** and is *defined to* be the conversion factor between the **received power** P_r (W) and the **incident power density** S_{inc} (W/m²).

Our aim is to identify the effective area function $A(\theta, \phi)$ in terms of the antenna gain function $G(\theta, \phi)$ and two constraints, one regarding R, and the other regarding the antenna polarization.

Once that is accomplished, the receiving properties of antennas will be relatively easy to understand.

• Combining the expressions above we note that

$$P_r = \frac{P_t}{4\pi r^2} G(\theta, \phi) A(\theta_2, \phi_2).$$

• Now, swap the source I_t and the termination resistance R between the two (identical) sets of antenna terminals, so that now ant.2 becomes the "transmitter" and ant.1 is the "receiver".

Power received by ant.1 in response to S_{inc} from ant.2 in that case can be expressed as

$$P_r = \frac{P_t}{4\pi r^2} G(\theta_2, \phi_2) A(\theta, \phi)$$

by using similar arguments — in this expression $G(\theta_2, \phi_2)$ is the antenna gain in the direction of ant.1 as seen by ant.2, whereas $A(\theta, \phi)$ is the antenna effective area for the direction ant.2 appears with respect to ant.1.

Since the two cases considered above are *in essence* identical — in each case the receiving antenna is exposed to the same tangential field arriving from the transmitting antenna — the very same power P_r must be received by Rin each case; hence, it is necessary that

$$G(\theta,\phi)A(\theta_2,\phi_2) = G(\theta_2,\phi_2)A(\theta,\phi),$$

for all possible (θ, ϕ) , implying that

$$\frac{A(\theta,\phi)}{G(\theta,\phi)} = \frac{A(\theta_2,\phi_2)}{G(\theta_2,\phi_2)} = \text{const.}$$

Therefore, we conclude that for short dipole antennas, the effective area function must be given as

$$A(\theta,\phi) = K_a G(\theta,\phi),$$

where K_a is a scaling constant independent of (θ, ϕ) that remains to be determined. • Later we will show that the required scaling is

$$K_a = \frac{\lambda^2}{4\pi} \Rightarrow A(\theta, \phi) = \frac{\lambda^2}{4\pi} G(\theta, \phi)$$

not only for short-dipoles, but for all types of antennas¹.

That is a crucial finding which implies that the **reciprocal** relation of P_r to P_t found above **between** the cases when the transmitting and receiving roles of identical short-dipoles are swapped, will also be valid even when the antennas are non-identical (e.g., antenna 1 a short dipole, antenna 2 a broadside 1D array of half-wave dipoles).

We can then succinctly express the reciprocal relation in the form

$$P_r = P_t \frac{\lambda^2 G_t G_r}{(4\pi r)^2}$$
, (Friis transmission formula)

where G_t and G_r refer to the gain of the (arbitrary) antennas used for transmission and reception in the directions of direct contact between the antennas in any communications link, whereas P_r and P_t are, respectively, the average power transmitted and the average available power of the receiving antenna.

 Reciprocity is a convenient property of antenna behaviour because it allows for one of the link antennas to be a low-gain antenna at

$$A(\theta,\phi) = \frac{\lambda^2}{4\pi} G(\theta,\phi)$$

Friis formula and transmission gain

$$\frac{P_r}{P_t} = \frac{\lambda^2 G_t G_r}{(4\pi r)^2}$$

¹However, this result for K_a requires the termination R to be a "matched load" to the antenna and also effective area $A(\theta, \phi)$ be defined for the reception of the "co-polarized" component of the incident field. The concepts of a *matched load* and a *co-polarized field* will be explained in detail later on.

the expense of the gain of the second antenna, for a fixed value of overall **transmission gain** P_r/P_t .

Example 1:

1. Consider a \hat{z} -polarized short-dipole antenna at the origin terminated by a load $Z_L = Z_a^*$, where Z_a is the input impedance of the same dipole antenna when it is used for transmission purposes.

Because $Z_L = Z_a^*$ (and not an arbitrary R — see margin) we will be able to compute the time-averaged power P_r delivered by the antenna into the load Z_L using the simple procedure explained at the end of this example (based on the ideas already developed above).

2. Also consider the same \hat{z} -polarized short-dipole antenna responding to incident plane TEM waves which have electric field vectors polarized in $\hat{\theta}$ direction.

Because the polarization direction $\hat{\theta}$ of the incident electric field is copolarized with the receiving antenna, we will be able to compute P_r using the simple procedure explained next.

To compute the time-averaged power P_r delivered by the \hat{z} -polarized antenna to its matched termination $Z_L = Z_a^*$ it is sufficient to multiply

$$A(\theta,\phi) = \frac{\lambda^2}{4\pi} G(\theta,\phi)$$

with

 $S_{inc} = \frac{|\mathbf{E}_{inc}|^2}{2\eta};$

 $P_r = S_{inc} A(\theta, \phi).$

Had it been the case that $Z_L \neq Z_a^*$ or the polarization of the electric field not $\hat{\theta}$, the formula for P_r would have been different.

Example 2: This is one possible receiving scenario compatible with what was described in Example 1.

The incident TEM wave field is

$$ilde{\mathbf{E}}_{inc} = 120\pi rac{\hat{z}-\hat{x}}{\sqrt{2}} e^{j2\pi(x+z)}\,\mathrm{V/m}.$$

This field has a wave vector

$$\mathbf{k} = -2\pi(\hat{x} + \hat{z}) \operatorname{rad/m},$$

indicating the antenna sees the incident wave coming from direction $\theta = 45^{\circ}$ with a polarization direction $\hat{\theta}$. Since

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{|\mathbf{k}|} = \frac{2\pi}{2\pi\sqrt{2}} = \frac{1}{\sqrt{2}} \,\mathrm{m}$$

and

$$A(\theta,\phi) = \frac{\lambda^2}{4\pi} G(45^\circ,\phi) = \frac{1/2}{4\pi} \underbrace{\left(\frac{3}{2}\sin^2 45^\circ\right)}_{\text{short-dipole gain at } 45^\circ} = \frac{1.5}{16\pi} \,\mathrm{m}^2,$$

and, furthermore,

$$S_{inc} = rac{| ilde{\mathbf{E}}_{inc}|^2}{2\eta} = rac{(120\pi)^2}{2 imes 120\pi} = 60\pi\,\mathrm{W/m^2},$$

it follows that

$$P_r = S_{inc}A(\theta, \phi) = 60\pi \times \frac{1.5}{16\pi} = \frac{90}{16}$$
 W.

Assuming that the antenna is terminated with a matched load, it will deliver a time-averaged power of 90/16 W to its load.

Example 3: Another scenario compatible with what was described in Example 1.

The incident TEM wave field is

$$\tilde{\mathbf{E}}_{inc} = 120\pi \hat{z} e^{j2\pi x} \,\mathrm{V/m}$$

This field has a wave vector

$$\mathbf{k} = -2\pi \hat{x} \operatorname{rad}/\mathrm{m},$$

indicating the antenna sees the incident wave coming from direction $\theta = 90^{\circ}$ with a polarization direction $\hat{\theta}$. Since

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{|\mathbf{k}|} = \frac{2\pi}{2\pi} = 1 \,\mathrm{m}$$

and

$$A(\theta, \phi) = \frac{\lambda^2}{4\pi} G(90^\circ, \phi) = \frac{1}{4\pi} \underbrace{(\frac{3}{2}\sin^2 90^\circ)}_{2\pi} = \frac{3}{8\pi} \mathbf{m}^2,$$

short-dipole gain at 90°

and, furthermore,

$$S_{inc} = rac{|\mathbf{\tilde{E}}_{inc}|^2}{2\eta} = rac{(120\pi)^2}{2 imes 120\pi} = 60\pi \, \mathrm{W/m^2},$$

it follows that

$$P_r = S_{inc}A(\theta, \phi) = 60\pi \times \frac{3}{8\pi} = \frac{90}{4}$$
 W

Assuming that the antenna is terminated with a matched load, it will deliver a time-averaged power of 22.5 W to its load.

Example 4: This scenario is incompatible with what was described in Example 1.

The incident TEM wave field is

$$\tilde{\mathbf{E}}_{inc} = 120\pi \hat{y} e^{j2\pi x} \,\mathrm{V/m}$$

This field has a wave vector

$$\mathbf{k} = -2\pi \hat{x} \operatorname{rad}/\mathrm{m},$$

indicating the antenna sees the incident wave coming from direction $\theta = 90^{\circ}$. But the polarization direction of the wave is not $\hat{\theta}$, it is $\hat{\phi}$. Therefore, even though we have

$$\lambda = \frac{2\pi}{k} = \frac{2\pi}{|\mathbf{k}|} = \frac{2\pi}{2\pi} = 1 \,\mathrm{m}$$

and

$$A(\theta, \phi) = \frac{\lambda^2}{4\pi} G(90^\circ, \phi) = \frac{1}{4\pi} \underbrace{(\frac{3}{2}\sin^2 90^\circ)}_{\text{short-dipole gain at } 90^\circ} = \frac{3}{8\pi} \mathbf{m}^2,$$

we need to conclude that

$$P_r = S_{inc}A(\theta, \phi) = 0$$

because S_{inc} that needs to be associated with a $\hat{\theta}$ -polarized field is zero!

- In Example 4 the incident field is *cross-polarized* with the receiving antenna and therefore there is no power transfer to the matched termination of the antenna.
- By contrast, in Examples 2 and 3 the incident fields were *copolarized* with the receiving antenna and therefore average power calculation to the matched antenna termination was accomplished by following the recipe given in Example 1.

Try understanding the meaning of co- and cross-polarized incident fields.

An incident field is said to be *co-polarized* when its electric field vector is aligned with the field the receiving antenna would radiate if it were being used in transmission mode !!!

- In the upcoming lectures we will verify the important ideas introduced in this lecture namely
 - 1. The matched impedance concept,
 - 2. Co- and cross-polarized signals,
 - 3. The effective area $A(\theta, \phi)$ and the relation

$$A(\theta,\phi) = \frac{\lambda^2}{4\pi} G(\theta,\phi),$$

4. Friis transmission formula

$$P_r = P_t \frac{\lambda^2 G_t G_r}{(4\pi r)^2} = P_t \frac{A_t A_r}{(\lambda r)^2}.$$