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The Earth’s thermosphere plays a critical role in driving electrodynamic processes in the ionosphere and
in transferring solar energy to the atmosphere, yet measurements of thermospheric state parameters,
such as wind and temperature, are sparse. One of the most popular techniques for measuring these
parameters is to use a Fabry—Perot interferometer to monitor the Doppler width and breadth of naturally
occurring airglow emissions in the thermosphere. In this work, we present a technique for estimating
upper-atmospheric winds and temperatures from images of Fabry—Perot fringes captured by a CCD de-
tector. We estimate instrument parameters from fringe patterns of a frequency-stabilized laser, and we
use these parameters to estimate winds and temperatures from airglow fringe patterns. A unique feature
of this technique is the model used for the laser and airglow fringe patterns, which fits all fringes simul-
taneously and attempts to model the effects of optical defects. This technique yields accurate estimates
for winds, temperatures, and the associated uncertainties in these parameters, as we show with a Monte
Carlo simulation. © 2014 Optical Society of America

OCIS codes:  (010.0280) Remote sensing and sensors; (120.2230) Fabry-Perot; (100.2650) Fringe
analysis; (280.4991) Passive remote sensing; (300.2140) Emission.
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1. Introduction

The Fabry—Perot interferometer (FPI) is an impor-
tant tool for upper-atmospheric research, providing
remote measurements of neutral wind and tempera-
ture. Knowledge of these quantities is important for
understanding the dynamics and coupling between
the intermingled neutral and plasma environment
of the upper atmosphere. Through collisions with
ionized species composing the ionosphere, the motion
of the neutral species (referred to as the neutral
wind) can drive currents and electric fields in the
ionosphere [e.g., 1]. The direction and magnitude
of the neutral wind is also thought to play a role
in the development of instabilities in the ionosphere
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[e.g., 2] that can adversely affect technological
systems reliant on trans-ionospheric radio wave
propagation, such as communication and navigation
satellite systems. Furthermore, the response of the
neutral atmosphere to geomagnetic activity has an
impact on the energy balance of the upper atmos-
phere through Joule heating effects and driving sig-
nificant increases in the neutral wind [e.g., 3].

The FPI infers the neutral wind and temperature
from the Doppler shift and thermal Doppler broaden-
ing of naturally occurring airglow emissions in the
upper atmosphere. The specific emission wavelength
measured determines the altitude to which the
estimate pertains. For measurements of the thermo-
spheric neutral wind, for example, the emission cen-
tered at 630.0 nm is used. This emission is caused by
the dissociative recombination of O and originates
from a layer at approximately 250 km in altitude.


http://dx.doi.org/10.1364/AO.53.000666

The FPI uses a narrowband filter to reduce interfer-
ence and feeds the light wave through an etalon,
generating multiple phase-shifted copies of the wave,
which interfere through the lens to create Fabry—
Perot fringes on the CCD. In order to determine
Doppler shift and breadth from the raw Fabry—Perot
fringe pattern, we must account for instrumental
effects. Specifically, we must establish the Doppler
reference (for wind) and determine the instrumental
broadening (for temperature). Often, this calibration
step is accomplished by observing a monochromatic
source at a known wavelength that fills the field of
view, yielding a measurement of the instrument func-
tion, which is described in more detail in Section 2.

Various methods have been used to analyze FPI
fringes in order to obtain wind and temperature. Per-
haps the simplest is to fit Gaussian functions to both
the calibration fringes and the airglow fringes [4].
A Gaussian, or indeed any symmetric function,
works suitably well for estimating wind because it
accurately determines the line center. However, since
neither the calibration fringes nor the airglow
fringes are actually Gaussians, this technique re-
turns inaccurate temperature. As is well known,
the ideal shape of the calibration fringe is an Airy
function [5], and using an Airy function instead of
a Gaussian has been shown to yield a 120 K differ-
ence in the recovered temperature [6], which is an
order of magmtude greater than the typical statisti-
cal uncertainty in our systems.

A further complication in FPI analysis is that all
instruments have defects in the etalon and lens that
cause the instrument function to deviate from the
ideal Airy function. An elegant solution to this prob-
lem is the use of a low-order Fourier fit to the calibra-
tion fringes, which can account for such deviation [7].
However, this method treats each fringe independ-
ently, which can lead to biases in temperature,
presumably due to interference between adjacent
fringes, and inaccurate uncertainty estimates [8].
Some researchers use a combination of techniques;
for example, some use Gaussian fits to estimate wind
and Fourier fits to estimate temperature [9]. For
all-sky Doppler imaging systems, an Airy function
with optical distortion parameters has been used to
account for noncircular fringes [10]. Although these
extra distortion parameters are necessary to esti-
mate accurate wind, accurate temperature estima-
tion remains a challenge because these parameters
only account for the noncircular nature of the fringe
peaks, and not the deviation of the fringe shapes
from Airy functions.

As a result of these difficulties in estimating tem-
perature, some researchers attempt to remove this
bias in postprocessing by normalizing temperature
measurements to an outside source such as an inco-
herent scatter radar [6]. However, it is our belief
that with proper processing, accurate temperature
can be obtained directly from the data.

We propose a technique that simultaneously
fits all laser fringes as well as a shift-variant

point-spread function. The point-spread function
accounts for optical defects in the etalon and lens,
leading to accurate estimates of wind and tempera-
ture. We then use the inferred instrument function
to simultaneously fit all fringes in the sky image.
As a byproduct of posing the problem as a model
fit, we obtain accurate uncertainties of wind and
temperature.

Section 2 describes background material and intro-
duces our models for the calibration fringes and
alrglow fringes. Section 3 provides details of the in-
version procedure, and Section 4 shows results from
Monte Carlo simulations, which test this procedure.
Section 5 concludes and outlines future work.

2. Background and Forward Model

The heart of the FPI is the etalon, which comprises
two parallel, reflective plates of glass separated by
an air gap. When illuminated by a source, the etalon
creates an interference pattern, which is imaged onto
a CCD by an objective lens. As the intent of this pa-
per is for general purpose, we refer the reader to the
literature to find more details about the specific in-
strument used for examples in this paper (MiniME)
[8,11,12]. An example of the FPI fringe pattern
obtained by an imaging FPI is shown in Fig. 1. We
perform an annular summation around the fringe
center to reduce this 2D image to a 1D function of
radius, r (described in detail in Section 3). Each pixel
in this fringe pattern is governed by a Fredholm
integral equation of the first kind [8]:

S(r) = / Z A(r, )Y (R)da, 1)

where r is the radial distance from the center of the
fringe pattern (usually measured in pixels), 1 is
a wavelength, S(r) is the pixel count at radius r,
A(r,2) is the kernel, known as the instrument func-
tion, and Y (1) is the unknown source spectrum
(which includes the effects of possible narrowband
interference filters used to isolate the atmospheric
emission of interest). We have disregarded optical
distortions by approximating the fringes as perfectly
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Fig. 1.

Example FPI airglow fringe image.

1 February 2014 / Vol. 53, No. 4 / APPLIED OPTICS 667



circular in order to describe S and A as functions of
the radius r. We note that in our systems such optical
distortions are not evident, but our model can be ex-
tended to include the effects of distortions if neces-
sary, using the techniques developed in [10].

A. Model for Laser Calibration Fringes

In order to estimate spectral information, Y (1), from
the raw data, S(r), we need to know the instrument
function, A(r,4). In the ideal case, the instrument
function is an Airy function [5]:

I

1+ (1‘53)2 sin? (22 cos O(r))

A(r, ) = 2)

where I is called the intensity and has units of CCD
counts, R is the reflectivity of the etalon plates, n is
the index of refraction in the etalon gap, ¢ is the eta-
lon gap in meters, and 6(r) is the angle with the
optical axis. Pixels at larger radial distances on the
CCD capture light from larger angles. For the FPI
used as an example in this paper, the field of view
is 1.5°. For narrow-field FPIs such as this one, the
function 0(r) is given by

0(r) = tan~(ar), 3)

where a is a constant that will be estimated from the
laser calibration image. For use in wide-angle FPI
systems, a more suitable representation of the lens
may need to be substituted.

In practice, all etalons and lenses will have defects,
causing the instrument function to deviate from this
ideal Airy function by broadening each fringe. Early
work resulted in analytical broadening functions
for a number of defects including microscopic etalon
flatness imperfections, spherical defect of the etalon
plates, and the finite aperture [13]. However, these
analytical expressions are not enough to fully char-
acterize the instrument function, so a calibration
using a monochromatic source is necessary [7]. We
see from Eq. (1) that a monochromatic source spec-
trum [i.e., a delta function for Y (1)] will give us an
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Fig. 2. Example FPI laser calibration fringe image.
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image that is a copy of the instrument function at
that wavelength. For the monochromatic source, we
use a 632.8 nm frequency-stabilized HeNe laser,
since it is reasonably close in wavelength to the
630.0 nm airglow emission we observe.

We show an example laser calibration image in
Fig. 2. We perform an annular summation on this
raw image to obtain a 1D function of radius, r, which
is described in more detail in Section 3. This reduced
fringe pattern is shown in Fig. 3. The data are plotted
as a function of 72 so that the fringes appear equally
spaced. Plotted with the data is the best-fit ideal Airy
function. We also show the residual, the difference
between the data and the Airy model. At least two
deviations from the ideal Airy function are clear.
First, vignetting, absorption, and other nonidealities
cause attenuation of the fringes near the edge of the
CCD. Second, the shape of the fringes appears to
be shorter and wider than an ideal Airy function,
presumably due to the broadening described above.

In order to better characterize the instrument
function, we introduce additional parameters to our
model to account for these defects. First, we replace
the constant I in Eq. (2) with a quadratic falloff term:

2
() )

where r,,; is the maximum value of r on the CCD.
In practice, I; and I, are often negative. We have
tried higher-order fits but find that a quadratic func-
tion is sufficient. This accounts for the first deviation
described above.

The second deviation is accounted for by introduc-
ing into our forward model a point-spread function,
b(s,r). This point-spread function blurs the Airy
pattern to create a modified Airy function, A(r):

A(r,2) = / " b(s, )A(s, A)ds, )
0

where the integral is taken over the entire fringe pat-
tern, and s is a dummy variable in the same coordi-
nates as r. Each pixel of the modified Airy function,
A(r,4), is a weighted average of the neighborhood
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Fig. 3. Example instrument function with best-fit ideal Airy func-
tion. The difference (residual) between data and model is also
shown. Optical defects cause a large mismatch, which demands
a more complex model.



pixels of the ideal Airy function, where the weights
are determined by the shape of the point-spread
function at that pixel, b(s,r). The effect of this blur-
ring is to broaden the fringes, which simulates the
effects of optical defects.

In a first approximation, we assume the width of
the point-spread function does not change across
the CCD and takes the form of a Gaussian centered
on the pixel, r:

_(sﬂ")2

e . (6)

b(s,r) =

2n0

This point-spread function is normalized so that its
integral is unity, and thus its width, o, is its only
free parameter. Note that such a constant-width
Gaussian will blur the outer fringes more than the
inner fringes since the outer fringes are closer to-
gether, which matches what we see in practice.

However, because of varying path lengths through
the optics, the point-spread function, b(s,r), is not
constant across the CCD, and its width, ¢, varies
slightly. As such, we have found it useful to allow
o to vary as a function of r, so we update Eq. (6):

s-n?

e o2 , @)

b(s,r) =

1
V2ro(r)?

where we parameterize o(r) with a first-order
Fourier series:

o(r) = 09 + 07 sin (ﬂr) + 09 cos (nr 4 ) (8)

rmax

Unlike our fit of intensity, I, we chose to implement
a Fourier series fit instead of a polynomial fit for
a numerical reason: different Fourier series terms
are orthogonal, while polynomial terms are not.
Choosing a Fourier series fit reduces correlation
between oy, o1, and oy, allowing us to achieve
convergence more reliably. That being said, we find
values of o; and o, often smaller than o(, so other
parameterizations of o(r) are likely possible.

Table 1. Parameters of the Forward Model for Laser Calibration Fringes®

Fixed/ Typical
Parameters Description Varied Value
A Laser wavelength Fixed 632.8 nm
n Index of refraction Fixed 1
R Reflectivity Varied 0.8
t Etalon gap Varied 15 mm
a Magnification constant Varied 8.5 x 107
I Average intensity Varied 1000 counts
I, Linear falloff of intensity =~ Varied -0.1
I, Quadratic falloff of intensity ~ Varied 0.005
6 Average blur size Varied 0.8 pixels
o1 Sin-variation of blur size Varied 0.1 pixels
oy Cos-variation of blur size Varied -0.05 pixels
B CCD bias Varied 300 counts

“Some parameters are fixed and some are allowed to vary to fit the
data.

We now update our forward model, Eq. (1), with
the modified Airy function and add the CCD bias,
B, as a parameter:

S = /_ “ A(r, )Y (1)di + B. 9)

Taken together, Eqgs. (2)-(5) and (7)—(9) define
a forward model for the calibration laser fringe pat-
tern. The parameters in this model and their typical
values for our systems are shown in Table 1. More
details on how these parameters are estimated from
the raw data are described in Section 3. An example
model fit is shown in Fig. 4, where it can be seen that
the residual is much smaller than in Fig. 3. However,
the fit is not perfect, with a ¥ value of 2.6. This is due
to two facts: our model does not perfectly capture the
effects of optical distortions, and the high signal-to-
noise ratio causes small deviations from the model to
significantly impact 2.

B. Model for Airglow Fringes

With the model for the laser calibration fringes de-
veloped, we turn to the model for the airglow fringes.
These are of course governed by the same equations,
except the source spectrum, Y (1), is no longer a delta
function but is assumed to be a thermally broadened
and Doppler-shifted Gaussian, the equation for
which is given in [8] and is reproduced here with
a typographical error corrected:

1(0-2)\2
V) = Yig + Vi e {3 (“5) |

(10)

where Y}, is the background sky emission, assumed
to be independent of 4, Y7, is the intensity of the air-
glow line, 1, is its center wavelength, and Al is its
Doppler breadth. The line center is related to the
line-of-sight wind velocity through a Doppler shift:

v
A =/10(1+E),

where J is the nominal line center, v is the line-of-
sight velocity away from the instrument, and c is

(11)
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Fig. 4. Example instrument function with best-fit modified
Airy function, and residual between data and modified Airy fit.
Compare to Fig. 3.
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Table 2. Free Parameters of the Forward Model for
Airglow Fringes?®

Parameters Description

B CCD bias

Y Background emission
Yiine Line intensity

Ae Line center

AL Linewidth

“All other parameters are fixed at the values
determined by the laser calibration analysis.

the speed of light. The Doppler broadening is related
to the temperature through [8]:

_o iT

AA ,
c\Ym

(12)

where % is the Boltzmann constant, T is the temper-
ature of the emitting species, and m is its mass.
Taken together, Eqgs. (2), (3), (4), (5), (1), (8), (9), and
(10) define a forward model for the airglow fringes.
The free parameters are shown in Table 2 and are
varied to match the airglow fringes, a process that
is described in more detail in Section 3. All other
parameters are fixed at the values found by analyz-
ing the laser calibration fringes. An example model
fit of an airglow fringe pattern is shown in Fig. 5.

3. Inversion

In this section, we describe the details of the data
reduction and inversion. First, we reduce the 2D
calibration and airglow fringe images to 1D fringe
patterns. Next, we fit the model described in Sec-
tion 2.A to the calibration fringes in order to estimate
instrument parameters, and we use these instru-
ment parameters to fit the model in Section 2.B to
the airglow fringes.

Although it is possible to fit our models directly to
the 2D fringe images, we first reduce our data to 1D
fringe patterns to decrease computation time. The
details of this reduction are provided in the literature
[8] and are briefly outlined here. First, we determine
the fringe center from the laser calibration image by
thresholding the image, identifying contiguous re-
gions as the fringes, fitting circles to each fringe,
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Fig. 5. Example airglow fringes with best-fit airglow model.

Also shown is the residual, the difference between the data and
the model.
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and taking the median center value. This yields an
estimate of the center pixel with a typical statistical
variation of a few hundredths of a pixel, which is less
than the 0.3 pixels required to maintain a tempera-
ture error below 1% [14]. With the center deter-
mined, the pixels are sorted as a function of radius
and averaged into R radial bins, a process known
as annular integration. The bin locations are chosen
so that all bins contain an approximately equal num-
ber of pixels. For our 512 x 512-pixel images, we use
R = 500. Our simulations for our systems suggest
that as long as the number of bins is greater than
about 200 yet small enough that each bin contains
several pixels, the inversion is not sensitive to the
number of bins.

We denote the average pixel count in the radial bin
with radius 7 as Nieer (1) and N girgiow (1), for the laser
calibration and airglow fringes, respectively. We pro-
ceed with the laser calibration fit by the standard
procedure of choosing the instrument parameters
that minimize y2:

R-1
)(2 — Z (Nlaser(ri) - S(ri))2’ (13)
i=0

aNlaser (rl')

where r; is the radius of the ith radial bin, there are
R =500 radial bins, and S(r;) is from Eq. (9), the for-
ward model for the calibration fringes, described in
Section 2.A. The statistical uncertainty of Ny, (7)),
given by oy,  (r;), is a bootstrapped estimate, found
by dividing the standard deviation of the pixel counts
in a radial bin by the square root of the number of
pixels in the bin.

In order to numerically evaluate the forward
model, S(r;), we must discretize the two integral
equations, Egs. (5) and (9). For Eq. (5), we do this in
the straightforward way of replacing the integral
with a summation over the radial bins:

R-1
A(r.2) =) b(s;.1)A(si. DAs;, (14)
=0

where in practice, b is narrow enough that the As;
term is taken as constant. For Eq. (9), a discrete form
is not necessary for the laser calibration fringes,
since we can analytically integrate over a delta func-
tion. However, we will need Eq. (9) for the airglow
fringe analysis, so we approximate the integral as
a sum over a suitably large wavelength range (typi-
cally, five free spectral ranges):

L-1
S(ry) =Y A(ri. )Y (4)Ad + B, (15)
J=0

where we have discretized the spectrum into L
equally spaced wavelength bins, 4;, and we have R
copies of Eq. (15), one for each radial bin, r;. Stacked
vertically, these R equations can be written in matrix
form as:



s = Ay + B1, (16)
where s is a vector of length R containing the model
fringe pattern, A is a R x L matrix, which has col-
umns containing monochromatic fringe patterns, y
is a vector of length L containing the discretized spec-
trum, and 1 is a length R vector with every element
equal to 1. This form offers an intuitive interpreta-
tion of the Fredholm integral, Eq. (9): the output
of the FPI (s) is a superposition of monochromatic
fringe patterns (columns of A), weighted by the
source spectrum (y).

To find the instrument parameters that minimize
v?, we use the well-known Levenberg—Marquardt
algorithm, which is provided in the Imfit Python
library [15]. This algorithm solves for optimized
parameter estimates along with statistical uncer-
tainties in these parameters. However, because the
Airy function is highly nonlinear in many of its
parameters, care must first be taken to provide an
adequate initial guess for these parameters. Some
of these parameters, such as I, I, I, and B, can
be approximated from the data. Others, such as a
and R, are approximately known from the instru-
ment design. For the etalon gap, ¢, we take advantage
of the fact that to the first order, the Airy function is
periodic in ¢, and we know the approximate value of
t from the instrument design. We perform a brute-
force search over the period, /2, to find an adequate
initial guess for ¢. For the remaining parameters, o,
01, and o9, we find that small initial guesses (65 = 0.5
pixels, 61 = 69 = 0 pixels) are sufficient.

Instead of immediately optimizing all the param-
eters simultaneously (a strategy that can lead to a
non-optimal local minimum), we proceed in stages,
optimizing only certain parameters at a time in order
to obtain a better initial guess for the next stage. The
final step is a full optimization over all parameters.
The ad-hoc sequence of stages was chosen through
testing and in our simulations appears to ensure con-
vergence. This approach is overly conservative be-
cause our data set is too large to allow for human
oversight, so the inversion must succeed every time.

With the instrument parameters determined, we
move on to analyze the airglow fringes. The same
process described above is applied. We use the center
location found from the laser calibration to average
the data into radial bins. We then perform a fit of the
model described in Section 2.B, discretized as de-
scribed above. For the discretization in Eq. (15),
we use L = 101, which our simulations show is large
enough to achieve accurate airglow parameters. The
fit minimizes a y? function analogous to Eq. (13).
Again, we must take care to find good initial guesses
for the parameters. Two parameters can be directly
estimated from the data: Yy;,. and B. Much like for
the etalon gap, the initial guess for the line center,
Ae, 18 estimated with a brute-force search over one
free spectral range. The line width, A4, is initially
set so that T'= 1000 K, and the background emis-
sion, Y4, is initially set to zero. As above, we use

the Levenberg—Marquardt algorithm and optimize in
stages in order to ensure convergence. Finally, we con-
vert the airglow parameters /., and A2 to line-of-sight
neutral velocity and temperature (and the associated
uncertainties) using Egs. (11) and (12).

A practical detail in these experiments is that the
instrument cannot measure airglow and calibration
fringes simultaneously. In order to allow the instru-
ment parameters to vary over time, the instrument
parameters used to invert an airglow image must be
interpolated in time from laser calibration exposures
before and after the airglow exposure.

There are three other practical details of possible
concern. First, the laser calibration images are cor-
rupted by noise, yielding noisy instrument param-
eter estimates, yet these parameters are assumed
exact in the airglow image inversion. However, since
the laser is much brighter than airglow, this effect is
small, as shown in Section 4.A.

Second, we incorrectly assume that the laser wave-
length is known exactly, which leads to a constant off-
set in our estimated line-of-sight wind. We remove
this offset by assuming the average vertical wind
over the night is zero, which is a less restrictive
assumption than the historical practice of assuming
its instantaneous value is zero [8].

The final concern relates to the estimate of the
etalon gap, ¢, from the laser fringes. In the Airy
function, this parameter is present only in the term
nt/A, so we must assume that the index of refraction,
n, and the laser wavelength, A, are constant. Tempo-
ral variations in the index of refraction or the laser
wavelength map directly into variations in the esti-
mated wind. In our systems, the laser frequency
stability is =1 MHz over 8 h, which translates to
a velocity drift of 0.6 (m/s), and we do not expect
appreciable drifts in the index of refraction. Any con-
stant offset in n or 1 will be corrected for by assuming
the average vertical wind is zero.

4. Monte Carlo Simulations

In order to test this inversion method, we perform
three Monte Carlo simulations. The first simulation
tests the uncertainty estimates, the second tests for
biases over the range of expected velocities and tem-
peratures, and the last tests for biases over signal-to-
noise ratio (SNR).

Each Monte Carlo trial consists of simulating truth
images for a given “true” wind and temperature, add-
ing realistic noise, and running the inversion routine
to recover estimates of wind and temperature. We
simulate two truth images: the laser calibration im-
age and the airglow image, using the forward models
described in Sections 2.A and 2.B with the discreti-
zation given in Section 3. To generate the laser cal-
ibration image, we use instrument parameters that
match those we typically see in practice (e.g., Table 1).
For the airglow image, we vary the true wind and
temperature and use values of B, Y},, and Yj;,e to
match what we see in practice. We use a fine spectral
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resolution (L = 300) to generate the airglow image,
but use L = 101 in the inversion.

We add Poisson noise to the laser calibration image
because this observation is photon-noise limited in
practice. We add Gaussian white noise of a given
SNR to the airglow image because dark noise tends
to dominate. If we define AS as the difference be-
tween the maximum and minimum CCD counts of
S(r), then we define the SNR as

SNR = A—S
ON

a7

where oy is the standard deviation of the Gaussian
white noise, measured in CCD counts. Finally, we
apply the inversion method described in Section 3:
estimate the center pixel from the laser image,
reduce both images to 1D fringes, and fit our models
to obtain estimates of wind and temperature.

A. Simulation 1: Uncertainty Estimates

For our first Monte Carlo simulation, we use con-
stant values of v =100 (m/s), 7 =800 K, and
SNR = 5. We run 10* trials and compare our esti-
mated uncertainties with the actual error in the
estimated values. The results of all 10* trials are
plotted in Fig. 6. The estimated values follow the ex-
pected Gaussian distribution, with 68% of the dots
lying within the error bounds. The blue ellipse rep-
resents the sample covariance matrix of v and T,
from which we see that there is no discernable corre-
lation between errors in v and 7. We also find that
typical uncertainties in these parameters for SNR =
5 are 6, = 1.8 (m/s) and o7 = 6.5 K. The red ellipse
represents the average estimated uncertainties. The
alignment of the red and blue ellipses indicates that
the inversion routine is accurately estimating the
uncertainties. This implies that the small amount of
noise in the laser calibration images has a negligible
effect on the airglow parameter uncertainties. Hav-
ing verified the statistical errors, we investigate sys-
tematic errors in the second and third simulations.
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Fig. 6. Recovered wind and temperature for 10* simulated FPI
measurements. Also shown are the sample and estimated uncer-
tainty ellipses, which compare favorably, indicating accurate esti-
mation of error bars.
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B. Simulation 2: Biases Over Wind and Temperature

For our next simulation, we use randomized veloc-
ities and temperatures as known inputs into the
forward model and a constant SNR = 5. Velocities
and temperatures are chosen uniformly at random
from -300 to 300 (m/s) and from 300 to 1500 K, re-
spectively. We run 10 trials and show the results in
Fig. 7.

For each trial we calculate the velocity and temper-
ature error (the difference between estimated value
and actual value) and plot it against the true velocity
and temperature. For the velocity estimates, we find
that for all values of v and T there is a constant
0.4 (m/s) bias of unknown origin. This bias is negli-
gible compared to the bias arising from the unknown
laser wavelength, and it is removed by assuming
there is no average vertical wind over the night,
as discussed in Section 3. For the temperature
estimates, we find no statistically significant bias,
although we note that uncertainties are higher when
temperatures are higher, as expected [8].

C. Simulation 3: Biases Over SNR

Finally, we run a simulation with randomized SNR
between 0.5 and 5 and randomized velocities and
temperatures as in the previous simulation. We run
10* trials and show the results in Fig. 8. For all
values of SNR, we find no bias in velocity or tem-
perature.

These three simulations suggest that our inversion
method produces no significant biases in velocity and
temperature over ranges of velocity, temperature,
and SNR expected for real-world data, and that
the uncertainty in these parameters is accurately es-
timated. However, these simulations were performed
under the ideal case in which our instrument func-
tion is well modeled by our forward models described
above. Our method could produce biases for instru-
ments that deviate from these models.
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Fig. 7. Estimation errors in velocity and temperature as a func-
tion of true velocity and temperature for 10° simulated FPI mea-
surements. A small, 0.4 (m/s) velocity bias is present, but there is
no bias in temperature. In 68% of the trials, the error bar contains
zero (not shown), which matches the expectation from Gaussian
statistics.
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Fig. 8. Estimation errors in velocity and temperature for 10* si-
mulated FPI measurements, as a function of SNR. No biases are
evident. In 68% of the trials, the error bar contains zero (not
shown), which matches the expectation from Gaussian statistics.

5. Conclusion

We have introduced a technique for estimating wind
and temperature from laser calibration and airglow
fringe images obtained from a Fabry—Perot inter-
ferometer. This technique fits a single model to the
entire calibration fringe pattern and includes the
effects of optical defects in the instrument function.
Our Monte Carlo simulations show that this tech-
nique produces no significant biases in estimates
of wind or temperature, and the associated uncer-
tainties are accurately estimated.

In the future, we plan to empirically validate this
method by comparing observations from different in-
struments and cross-validating with results obtained
from incoherent scatter radars. Although these ra-
dars provide estimates of the ion and electron tem-
peratures, under the thermodynamic equilibrium
conditions expected in the upper atmosphere at
nighttime, they can be directly compared to the neu-
tral temperature estimated from an FPI observing
the thermospheric 630.0 nm emission layer. Initial
work has indicated that there may be a 30-50 K tem-
perature bias between instruments, which deserves
further investigation. We have currently only applied
this technique to the MiniME family of FPIs, and we
hope to verify it on other instruments in the future.
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