Department of Electrical and Computer Engineering Request for ECE 398

The information requested here is to be furnished for each ECE 398, ECE 498, and ECE 598 course listing. A given course should not be offered under these numbers for a second time unless a request for a permanent number accompanies the second request. <u>Prior approval</u> by the appropriate committees and the department head is required <u>each semester</u> the course is offered.

Course Title: Introduction to Photonics

Catalog Description: First course on active and passive photonic devices and applications. An introduction to optical processes in dielectric and semiconductor materials will be presented including waveguide confinement, electrical junctions, and electro-optics. Active and passive photonic components such as light emitting diodes, lasers, photodetectors, liquid crystals, and optical fiber will be introduced as well as optical communication and display applications.

Prerequisites: Credit in Phys 214.

Instructor(s): Kent Choquette

How many times has this course been offered?	Has never been offered	
--	------------------------	--

Proposed for:	Fall <u>X</u>	Spring		
	Year	Year	2010	
Course No:	ECE 398KC	ECE 498	ECE 598	
Credit:	3 underg	graduate hours	graduate hours	-

Normally credit of 1 hour results from 3 hours of lab or 1 hour of lecture-discussion per week for ECE 498 level courses.

Please	indicate: Lect	X	Disc	I	lab				
	Time of Day:	10:00 AM		Days o	f week:	MWF			
	Labs:	Ma	iximum en	rollment	30	ITS Roon	n <u>YES</u>		
							(please	e circle)	
Cours	e Justification:								
a.	Please attach	the course syl	labus.						
b.	Justify the cou	rse in terms of	new subje	ect matter	and ho	w the additio	n of th	is course	relates to
	overall pattern	of the courses	in your u	nit.					
c.	Explain how th	e course is di	fferent from	m similar	offerin	gs in other un	nits.		
Reque	st prepared by:]	Kent Choquett	e	Date:	Ian 20) 2010			
Reque	st prepared by. <u>-</u>	item enoquen		Date	Jun. 20	, 2010	<u> </u>		
Recon	nmendations:								
Area (Committee				Dat	e			
C	1				D	. 4 .			
Curric	ulum Committee				Da	ite	·		
Gradu	ate Committee				Da	te	<u> </u> .		

the

ECE398KC Introduction to Photonics

Proposed text: Class notes Supplementary texts: Saleh and Teich, *Fundamentals of Photonics*, 2nd Ed. (Wiley 2009) R. Quimby, *Photonics and Lasers; An Introduction* (Wiley 2006) R. Pierret, *Semiconductor Device Fundamentals* (Addison Wesley 1996)

Description: First course on active and passive photonic devices and applications. An introduction to optical processes in dielectric and semiconductor materials will be presented including waveguide propagation, confinement, electrical junctions, and emission/absorption. Active and passive photonic components such as light emitting diodes, lasers, photodetectors, liquid crystals, and optical fiber will be introduced as well as optical communication and display system applications.

Justification: To provide a technical context for modern photonic devices and applications for all undergraduate students in electrical and computer engineering. No junior level introduction course to photonics currently is offered. The cellular phone and its associated information distribution systems are used to introduce and motivate the study of photonic devices. The study and application of electromagnetic and semiconductor properties from a different perspective will provide motivation and background necessary for advanced courses.

. ..

. .

Midte Midte Final	⊫ework erm Exam I erm Exam II I Exam	25% 25% 25% 25%	
Syllabus: 1) Introduction Constituent	devices of cellula	r phone & information networks	5%
2) Semiconductor E Energy band Emission &	Electronic Propert ds & Carriers absorption	ties 2	20%
3) Electrical Junction Equilibrium of Forward/rev Electronic co	ons depletion rerse bias onfinement		
4) Active Photonic Detectors & Light emittin	Devices solar cells ig diodes & lasers	;	30%
5) Dielectric Optica Wave equat Refraction/re Attenuation	Il Properties ion eflection & dispersion	2	20%
6) Liquid Crystal O Electro-optic Spatial light	ptics cs modulators	2	20%
7) Optical Commun Optical links Modulation	nication Systems , & multiplexing		
8) Two Midterm Ex	ams (in-class)		5%